Profil isopérimétrique, métriques périodiques et formes d'équilibre des cristaux

Pierre Pansu

ESAIM: Control, Optimisation and Calculus of Variations (1999)

  • Volume: 4, page 631-665
  • ISSN: 1292-8119

How to cite

top

Pansu, Pierre. "Profil isopérimétrique, métriques périodiques et formes d'équilibre des cristaux." ESAIM: Control, Optimisation and Calculus of Variations 4 (1999): 631-665. <http://eudml.org/doc/90559>.

@article{Pansu1999,
author = {Pansu, Pierre},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {crystallography; isoperimetric inequality; stable norm; Wulff shape},
language = {fre},
pages = {631-665},
publisher = {EDP Sciences},
title = {Profil isopérimétrique, métriques périodiques et formes d'équilibre des cristaux},
url = {http://eudml.org/doc/90559},
volume = {4},
year = {1999},
}

TY - JOUR
AU - Pansu, Pierre
TI - Profil isopérimétrique, métriques périodiques et formes d'équilibre des cristaux
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 1999
PB - EDP Sciences
VL - 4
SP - 631
EP - 665
LA - fre
KW - crystallography; isoperimetric inequality; stable norm; Wulff shape
UR - http://eudml.org/doc/90559
ER -

References

top
  1. [1] K. Alexander, J.T. Chayes et L. Chayes, The Wulff construction and asymptotics of the finite cluster distribution for 2 dimensional Bernoulli percolation. Comm. Math. Phys. 131 ( 1990) 1-50. Zbl0698.60098MR1062747
  2. [2] I. Babenko, Closed geodesics, asymptotic volume and characteristics of group growth. Izv. Akad. Nauk SSSR 52 ( 1988) 675-711; Engl. Transl. Math. USSR Izv. 33 ( 1989) 1-37. Zbl0668.53032MR966980
  3. [3] I. Babenko, Volume rigidity of 2-dimensional manifolds. Mat. Zametki 48 ( 1990) 10-14; Engl. Transl. Math. Notes 4 ( 1990) 629-632. Zbl0717.53029MR1081887
  4. [4] W. Blaschke, Über affine Geometrie VII: Neue Extremeigenschaften von Ellipse und Ellipsoid. Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math.-Phys. Kl. 69 ( 1917) 306-318. Zbl46.1112.06JFM46.1112.06
  5. [5] D.Yu Burago et S. Ivanov, On asymptotic volume of tori. Geom. Funct. Anal. 5 ( 1995) 800-808. Zbl0846.53043MR1354290
  6. [6] D.Yu. Burago et S. Ivanov, On asymptotic isoperimetric constant of tori ( 1998) preprint. Zbl1022.53029MR1650086
  7. [7] H. Brunn, Über Ovale und Eiflächen. Inaug. Diss. München ( 1887). JFM19.0615.01
  8. [8] D.Yu. Burago, Periodic metrics. Representation theory and dynamical systems. Adv. Sov. Math. 9 ( 1992) 205-210. Zbl0762.53023MR1166203
  9. [9] P. Curie, Sur la formation des cristaux et sur les constantes capillaires de leurs différentes faces. Bull. Soc. Minér. France 5 ( 1885) 145-150. 
  10. [10] R. Cerf, Large deviation for three dimensional supercritical percolation. Prépublication d'Orsay 98.71 ( 1998). Zbl0962.60002
  11. [11] J. de Coninck, F. Dunlop et V. Rivasseau, On the microscopic validity of the Wulff construction and of the generalized Young equation. Comm. Math. Phys. 121 ( 1989) 401-419. Zbl0659.60140MR990773
  12. [12] R. Dobrushin, R. Kotecky et S. Shlosman, Wulff construction, a global shape from local interaction. Transl. Math. Monogr. 104. Providence, RI, Amer. Math. Soc. ( 1992). Zbl0917.60103MR1181197
  13. [13] G. Faber, Beweis dass unter allen homogenen membranen von gleicher Flache und gleicher Spanne, die Kreisformige den tiefsten Grundton gibt. S. B. Math. Kl. Bayer. Akad. Wiss. ( 1923169-172. Zbl49.0342.03JFM49.0342.03
  14. [14] H. Federer, Geometric measure theory. Springer Verlag, Berlin, Grundlehren Band 153 ( 1969). Zbl0176.00801MR257325
  15. [15] H. Federer, Real flat chains, cochains and variational problems. Indiana Univ. Math. J. 24 ( 1974) 351-407. Zbl0289.49044MR348598
  16. [16] C.F. Gauss, Principia generalia theoriae figurae fluidorum in statu aequilibrii. C.F. Gauss Werke, Band 5, Teubner ( 1877) 29-77. 
  17. [17] M. Gromov, Structures métriques pour les variétés riemanniennes, J. Lafontaine et P. Pansu, Eds., Textes Mathématiques, 1. Cedic/Fernand Nathan, Paris ( 1981). Zbl0509.53034MR682063
  18. [18] P.M. Gruber et J.M. Wills, Handbook of convex geometry. Volume A. North-Holland, Amsterdam ( 1993). Zbl0777.52001
  19. [19] E. Krahn, Über eine von Rayleigh formulierte Minimaleigenschaft der Kreise. Math. Ann. 94 ( 1924) 97-100. Zbl51.0356.05JFM51.0356.05
  20. [20] J. Lott, Remark about heat diffusion on periodic spaces. Preprint Univ. Michigan ( 1997). Zbl0949.58027MR1476376
  21. [21] V. Mazya, Classes of domains and embedding theorems for function spaces. Dokl. Akad. Nauk USSR 133 ( 1960) 527-530. Zbl0114.31001MR126152
  22. [22] J. Mather, Action minimizing invariant measures for positive definite Lagrangian systems. Math. Z. 207 ( 1991) 169-207. Zbl0696.58027MR1109661
  23. [23] R.A. Minlos et Ya.G. Sinai, The phenomenon of phase separation in some lattice models of a gas I. Mat. Sb. 73 ( 1967) 375-448; Math. USSR Sb. 2 ( 1967) 325-395; II. Tr. Mosk. Mat. Obshch. 19 ( 1968) 113-178; Trans. Mosc. Math. Soc. 19 ( 1968) 121-196. 
  24. [24] J. Moser, On the volume element on a manifold. Trans. Amer. Math. Soc. 120 ( 1965) 286-294. Zbl0141.19407MR182927
  25. [25] V. Milman et G. Schechtman, Asymptotic theory offinite dimensional normed spaces. Springer, Berlin, Lecture Notes in Math. 1200 ( 1986). Zbl0606.46013MR856576
  26. [26] P. Pansu, Croisssance des boules et des géodésiques fermées dans les nilvariétés. Erg. Th. Dynam. Syst. 3 ( 1983) 415-446. Zbl0509.53040MR741395
  27. [27] P. Pansu, Profil isopérimétrique des métriques périodiques. Prépublication d'Orsay No. 98-44 ( 1998). 
  28. [28] Y. Reshetnyak, An extremal problem from the theory of convex curves. Uspekhi Mat. Nauk 8 ( 1953) 125-126. Zbl0052.18303MR61400
  29. [29] L.A. Santalo, Un invariante afin para los cuerpos convexos del espacio de n dimensiones. Portugal. Math. 8 ( 1949) 155-161. Zbl0038.35702
  30. [30] U. Schnell, Periodic sphere packings and the Wulff-shape. Beiträge Algebra Geom. 40 ( 1999) 125-140. Zbl0960.52013MR1678595
  31. [31] J. Sanchez-Hubert et E. Sanchez-Palencia, Introduction aux méthodes asymptotiques et à l'homogénéisation. Masson, Paris ( 1992). 
  32. [32] J.E. Taylor, Unique structure of solutions to a class of nonelliptic variational problems. Stanford 1973. Differential Geom., Proc. Symp. Pure Math. 27 Part 1 ( 1975) 419-427. Zbl0317.49054MR388225
  33. [33] J.M. Wills, Lattice packings of spheres and the Wulff-shape. Mathematika 43 ( 1996) 229-236. Zbl0872.52009MR1433271
  34. [34] G. Wulff, Zur Frage der Geschwindigkeit des Wachtums und der Auflösung der Krystalflächen. Z. Krystall. Min. 34 ( 1901) 449-530. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.