Approximate controllability and its well-posedness for the semilinear reaction-diffusion equation with internal lumped controls

Alexander Khapalov

ESAIM: Control, Optimisation and Calculus of Variations (1999)

  • Volume: 4, page 83-98
  • ISSN: 1292-8119

How to cite

top

Khapalov, Alexander. "Approximate controllability and its well-posedness for the semilinear reaction-diffusion equation with internal lumped controls." ESAIM: Control, Optimisation and Calculus of Variations 4 (1999): 83-98. <http://eudml.org/doc/90561>.

@article{Khapalov1999,
author = {Khapalov, Alexander},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {semilinear reaction-diffusion equation; approximate controllability; internal lumped control; multiple solutions},
language = {eng},
pages = {83-98},
publisher = {EDP Sciences},
title = {Approximate controllability and its well-posedness for the semilinear reaction-diffusion equation with internal lumped controls},
url = {http://eudml.org/doc/90561},
volume = {4},
year = {1999},
}

TY - JOUR
AU - Khapalov, Alexander
TI - Approximate controllability and its well-posedness for the semilinear reaction-diffusion equation with internal lumped controls
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 1999
PB - EDP Sciences
VL - 4
SP - 83
EP - 98
LA - eng
KW - semilinear reaction-diffusion equation; approximate controllability; internal lumped control; multiple solutions
UR - http://eudml.org/doc/90561
ER -

References

top
  1. [1] Sz. Dolecki, Observation for the one-dimensional heat equation. Stadia Math. 48 ( 1973) 291-305. Zbl0264.35036MR333444
  2. [2] C. Fabre, Uniqueness result for Stokes equations and their consequences in linear and nonlinear problems. ESAIM: Control Optimization and Calculus of Variations 1 ( 1996) 267-302. Zbl0872.93039MR1418484
  3. [3] C. Fabre, J.-P. Puel and E. Zuazua, Contrôlabilité approchée de l'équation de la chaleur semi-linéaire. C.R. Acad. Sci. Paris 315 ( 1992) 807-812. Zbl0770.35009MR1184907
  4. [4] C. Fabre, J.-P. Puel and E. Zuazua, Approximate controllability for the semilinear heat equation. Proc. Royal Soc. Edinburg 125A ( 1995) 31-61. Zbl0818.93032MR1318622
  5. [5] H.O. Fattorini and D.L. Russell, Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations. Quarterly of Appl. Mathematics ( 1974) 45-69. Zbl0281.35009MR510972
  6. [6] L.A. Fernández and E. Zuazua, Approximate controllability of the semilinear heat equation via optimal control. JOTA (to appear). Zbl0952.49003
  7. [7] A. Fursikov and O. Imanuvilov, Controllability and of evolution equations. Lect. Note Series 34, Res. Inst. Math., GARC, Seoul National University ( 1996). Zbl0862.49004MR1406566
  8. [8] A.Y. Khapalov, On unique continuation of the solutions of the parabolic equation from a curve. Control and Cybernetics, Quarterly 25 ( 1996) 451-463. Zbl0856.93047MR1408713
  9. [9] A.Y. Khapalov, Some aspects of the asymptotic behavior of the solutions of the semilinear heat equation and approximate controllability. J. Math. Anal. Appl. 194 ( 1995) 858-882. Zbl0846.35059MR1350200
  10. [10] O.H. Ladyzhenskaya, V.A. Solonikov and N.N. Ural'ceva, Linear and quasi-linear equations of parabolic type. AMS, Providence, Rhode Island ( 1968). 
  11. [11] J.-L. Lions, Remarques sur la contrôlabilité approchée, in Proc. of "Jornadas Hispano-Francesas sobre Control de Sistemas Distribuidos", University of Málaga, Spain (October 1990). Zbl0752.93037MR1108876
  12. [12] W.A.J. Luxemburg and J. Korevaar, Entire functions and Müntz-Szász type approximation. Trans. AMS 157 ( 1971) 23-37. Zbl0224.30049MR281929
  13. [13] V.J. Mizel and T.I. Seidman, Observation and prediction for the heat equation. J. Math. Anal. Appl. 28 ( 1969) 303-312. Zbl0183.38201MR247301
  14. [14] F. Rothe, Global Solutions of Reaction-Diffusion Systems. Lecture Notes in Mathematics No. 1072 (Springer-Verlag, Berlin, 1984). Zbl0546.35003MR755878
  15. [15] Y. Sakawa, Controllability for partial differential equations of parabolic type. SIAM J. Cont. 12 ( 1974) 389-400. Zbl0289.93010MR350593
  16. [16] T.I. Seidman, The coefficient map for certain exponential sums. Neder. Akad. Wetemsch. Indag. Math. 48 ( 1986) 463-478. Zbl0627.42002MR869762
  17. [17] J.-C. Saut and B. Scheurer, Unique continuation for some evolution equations. J. Diff. Equat. 66 ( 1987) 118-139. Zbl0631.35044MR871574
  18. [18] L. Schwartz, Étude des sommes d'exponentielles réelles. Actualités Sci. Indust. No. 959 (Hermann, Paris, 1943). Zbl0061.13601MR14502
  19. [19] H.X. Zhou, A note on approximate controllability for semilinear one-dimensional heat equation. Appl. Math. Optim. 8 ( 1982) 275-285. Zbl0503.49023MR660723
  20. [20] E. Zuazua, Finite dimensional null controllability for the semilinear heat equation. J. Math. Pures Appl. 76 ( 1997) 237-264. Zbl0872.93014MR1441986
  21. [21] E. Zuazua, Approximate controllability for semilinear heat equations with globally Lipschitz nonlinearities. Prep. del Depart, de Matematica Applicada, MA-UCM 1998-035, Universidad Complutense de Madrid ( 1998). Zbl0959.93025MR1782020

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.