Approximate controllability and its well-posedness for the semilinear reaction-diffusion equation with internal lumped controls

Alexander Khapalov

ESAIM: Control, Optimisation and Calculus of Variations (1999)

  • Volume: 4, page 83-98
  • ISSN: 1292-8119

How to cite

top

Khapalov, Alexander. "Approximate controllability and its well-posedness for the semilinear reaction-diffusion equation with internal lumped controls." ESAIM: Control, Optimisation and Calculus of Variations 4 (1999): 83-98. <http://eudml.org/doc/90561>.

@article{Khapalov1999,
author = {Khapalov, Alexander},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {semilinear reaction-diffusion equation; approximate controllability; internal lumped control; multiple solutions},
language = {eng},
pages = {83-98},
publisher = {EDP Sciences},
title = {Approximate controllability and its well-posedness for the semilinear reaction-diffusion equation with internal lumped controls},
url = {http://eudml.org/doc/90561},
volume = {4},
year = {1999},
}

TY - JOUR
AU - Khapalov, Alexander
TI - Approximate controllability and its well-posedness for the semilinear reaction-diffusion equation with internal lumped controls
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 1999
PB - EDP Sciences
VL - 4
SP - 83
EP - 98
LA - eng
KW - semilinear reaction-diffusion equation; approximate controllability; internal lumped control; multiple solutions
UR - http://eudml.org/doc/90561
ER -

References

top
  1. [1] Sz. Dolecki, Observation for the one-dimensional heat equation. Stadia Math. 48 ( 1973) 291-305. Zbl0264.35036MR333444
  2. [2] C. Fabre, Uniqueness result for Stokes equations and their consequences in linear and nonlinear problems. ESAIM: Control Optimization and Calculus of Variations 1 ( 1996) 267-302. Zbl0872.93039MR1418484
  3. [3] C. Fabre, J.-P. Puel and E. Zuazua, Contrôlabilité approchée de l'équation de la chaleur semi-linéaire. C.R. Acad. Sci. Paris 315 ( 1992) 807-812. Zbl0770.35009MR1184907
  4. [4] C. Fabre, J.-P. Puel and E. Zuazua, Approximate controllability for the semilinear heat equation. Proc. Royal Soc. Edinburg 125A ( 1995) 31-61. Zbl0818.93032MR1318622
  5. [5] H.O. Fattorini and D.L. Russell, Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations. Quarterly of Appl. Mathematics ( 1974) 45-69. Zbl0281.35009MR510972
  6. [6] L.A. Fernández and E. Zuazua, Approximate controllability of the semilinear heat equation via optimal control. JOTA (to appear). Zbl0952.49003
  7. [7] A. Fursikov and O. Imanuvilov, Controllability and of evolution equations. Lect. Note Series 34, Res. Inst. Math., GARC, Seoul National University ( 1996). Zbl0862.49004MR1406566
  8. [8] A.Y. Khapalov, On unique continuation of the solutions of the parabolic equation from a curve. Control and Cybernetics, Quarterly 25 ( 1996) 451-463. Zbl0856.93047MR1408713
  9. [9] A.Y. Khapalov, Some aspects of the asymptotic behavior of the solutions of the semilinear heat equation and approximate controllability. J. Math. Anal. Appl. 194 ( 1995) 858-882. Zbl0846.35059MR1350200
  10. [10] O.H. Ladyzhenskaya, V.A. Solonikov and N.N. Ural'ceva, Linear and quasi-linear equations of parabolic type. AMS, Providence, Rhode Island ( 1968). 
  11. [11] J.-L. Lions, Remarques sur la contrôlabilité approchée, in Proc. of "Jornadas Hispano-Francesas sobre Control de Sistemas Distribuidos", University of Málaga, Spain (October 1990). Zbl0752.93037MR1108876
  12. [12] W.A.J. Luxemburg and J. Korevaar, Entire functions and Müntz-Szász type approximation. Trans. AMS 157 ( 1971) 23-37. Zbl0224.30049MR281929
  13. [13] V.J. Mizel and T.I. Seidman, Observation and prediction for the heat equation. J. Math. Anal. Appl. 28 ( 1969) 303-312. Zbl0183.38201MR247301
  14. [14] F. Rothe, Global Solutions of Reaction-Diffusion Systems. Lecture Notes in Mathematics No. 1072 (Springer-Verlag, Berlin, 1984). Zbl0546.35003MR755878
  15. [15] Y. Sakawa, Controllability for partial differential equations of parabolic type. SIAM J. Cont. 12 ( 1974) 389-400. Zbl0289.93010MR350593
  16. [16] T.I. Seidman, The coefficient map for certain exponential sums. Neder. Akad. Wetemsch. Indag. Math. 48 ( 1986) 463-478. Zbl0627.42002MR869762
  17. [17] J.-C. Saut and B. Scheurer, Unique continuation for some evolution equations. J. Diff. Equat. 66 ( 1987) 118-139. Zbl0631.35044MR871574
  18. [18] L. Schwartz, Étude des sommes d'exponentielles réelles. Actualités Sci. Indust. No. 959 (Hermann, Paris, 1943). Zbl0061.13601MR14502
  19. [19] H.X. Zhou, A note on approximate controllability for semilinear one-dimensional heat equation. Appl. Math. Optim. 8 ( 1982) 275-285. Zbl0503.49023MR660723
  20. [20] E. Zuazua, Finite dimensional null controllability for the semilinear heat equation. J. Math. Pures Appl. 76 ( 1997) 237-264. Zbl0872.93014MR1441986
  21. [21] E. Zuazua, Approximate controllability for semilinear heat equations with globally Lipschitz nonlinearities. Prep. del Depart, de Matematica Applicada, MA-UCM 1998-035, Universidad Complutense de Madrid ( 1998). Zbl0959.93025MR1782020

NotesEmbed ?

top

You must be logged in to post comments.