Viability kernels and control sets

Dietmar Szolnoki

ESAIM: Control, Optimisation and Calculus of Variations (2000)

  • Volume: 5, page 175-185
  • ISSN: 1292-8119

How to cite

top

Szolnoki, Dietmar. "Viability kernels and control sets." ESAIM: Control, Optimisation and Calculus of Variations 5 (2000): 175-185. <http://eudml.org/doc/90565>.

@article{Szolnoki2000,
author = {Szolnoki, Dietmar},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {control affine system; reachable set; chain control set; control flow; viability kernels},
language = {eng},
pages = {175-185},
publisher = {EDP Sciences},
title = {Viability kernels and control sets},
url = {http://eudml.org/doc/90565},
volume = {5},
year = {2000},
}

TY - JOUR
AU - Szolnoki, Dietmar
TI - Viability kernels and control sets
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2000
PB - EDP Sciences
VL - 5
SP - 175
EP - 185
LA - eng
KW - control affine system; reachable set; chain control set; control flow; viability kernels
UR - http://eudml.org/doc/90565
ER -

References

top
  1. [1] J.-P. AUBIN, Viability Theory. Birkhäuser ( 1991). Zbl0755.93003MR1134779
  2. [2] F. COLONIUS AND W. KLIEMANN, Infinite time optimal control and periodicity. Appl. Math. Optim. 20 ( 1989) 113-130. Zbl0685.49002MR998400
  3. [3] F. COLONIUS AND W. KLIEMANN, Some aspects of control systems as dynamical systems. J. Dynam. Differential Equations 5 ( 1993) 469-494. Zbl0784.34050MR1235039
  4. [4] F. COLONIUS AND W. KLIEMANN, The Dynamics of Control. Birkhäuser ( 2000) to appear. Zbl1020.93500MR1752730
  5. [5] M. DELLNITZ AND A. HOHMANN, A subdivision algorithm for the computation of unstable manifolds and global attractors. Numer. Math. 75 ( 1997) 293-317. Zbl0883.65060MR1427710
  6. [6] G. HÄCKL, Reachable Sets, Control Sets and Their Computation. Dissertation, Universität Augsburg, "Augsburger Mathematische Schriften Band 7" ( 1996). Zbl0864.93019MR1394198
  7. [7] W. KLIEMANN, Qualitative Theorie Nichtlinearer Stochastischer Systeme. Dissertation, Universität Bremen ( 1980). 
  8. [8] H. NIJMEIJERAND A.J. VAN DER SCHAFT, Nonlinear Dynamical Control Systems. Springer-Verlag ( 1990). Zbl0701.93001MR1047663
  9. [9] P. SAINT-PIERRE, Approximation of the viability kernel. Appl. Math. Optim. 29 ( 1994) 187-209. Zbl0790.65081MR1254059
  10. [10] P. SAINT-PIERRE, Set-valued numerical analysis for optimal control and differential games ( 1998) to appear. Zbl0982.91014
  11. [11] D. SZOLNOKI, Berechnung von Viabilitätskernen. Diplomarbeit, Institut für Mathematik, Universität Augsburg, Augsburg ( 1997). 
  12. [12] A. UPPAL, W.H. RAY AND A.B. POORE, On the dynamic behavior of continuous stirred tank reactors. Chem. Engrg. Sci. 19 ( 1974) 967-985. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.