Viability kernels and control sets

Dietmar Szolnoki

ESAIM: Control, Optimisation and Calculus of Variations (2000)

  • Volume: 5, page 175-185
  • ISSN: 1292-8119

How to cite

top

Szolnoki, Dietmar. "Viability kernels and control sets." ESAIM: Control, Optimisation and Calculus of Variations 5 (2000): 175-185. <http://eudml.org/doc/90565>.

@article{Szolnoki2000,
author = {Szolnoki, Dietmar},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {control affine system; reachable set; chain control set; control flow; viability kernels},
language = {eng},
pages = {175-185},
publisher = {EDP Sciences},
title = {Viability kernels and control sets},
url = {http://eudml.org/doc/90565},
volume = {5},
year = {2000},
}

TY - JOUR
AU - Szolnoki, Dietmar
TI - Viability kernels and control sets
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2000
PB - EDP Sciences
VL - 5
SP - 175
EP - 185
LA - eng
KW - control affine system; reachable set; chain control set; control flow; viability kernels
UR - http://eudml.org/doc/90565
ER -

References

top
  1. [1] J.-P. AUBIN, Viability Theory. Birkhäuser ( 1991). Zbl0755.93003MR1134779
  2. [2] F. COLONIUS AND W. KLIEMANN, Infinite time optimal control and periodicity. Appl. Math. Optim. 20 ( 1989) 113-130. Zbl0685.49002MR998400
  3. [3] F. COLONIUS AND W. KLIEMANN, Some aspects of control systems as dynamical systems. J. Dynam. Differential Equations 5 ( 1993) 469-494. Zbl0784.34050MR1235039
  4. [4] F. COLONIUS AND W. KLIEMANN, The Dynamics of Control. Birkhäuser ( 2000) to appear. Zbl1020.93500MR1752730
  5. [5] M. DELLNITZ AND A. HOHMANN, A subdivision algorithm for the computation of unstable manifolds and global attractors. Numer. Math. 75 ( 1997) 293-317. Zbl0883.65060MR1427710
  6. [6] G. HÄCKL, Reachable Sets, Control Sets and Their Computation. Dissertation, Universität Augsburg, "Augsburger Mathematische Schriften Band 7" ( 1996). Zbl0864.93019MR1394198
  7. [7] W. KLIEMANN, Qualitative Theorie Nichtlinearer Stochastischer Systeme. Dissertation, Universität Bremen ( 1980). 
  8. [8] H. NIJMEIJERAND A.J. VAN DER SCHAFT, Nonlinear Dynamical Control Systems. Springer-Verlag ( 1990). Zbl0701.93001MR1047663
  9. [9] P. SAINT-PIERRE, Approximation of the viability kernel. Appl. Math. Optim. 29 ( 1994) 187-209. Zbl0790.65081MR1254059
  10. [10] P. SAINT-PIERRE, Set-valued numerical analysis for optimal control and differential games ( 1998) to appear. Zbl0982.91014
  11. [11] D. SZOLNOKI, Berechnung von Viabilitätskernen. Diplomarbeit, Institut für Mathematik, Universität Augsburg, Augsburg ( 1997). 
  12. [12] A. UPPAL, W.H. RAY AND A.B. POORE, On the dynamic behavior of continuous stirred tank reactors. Chem. Engrg. Sci. 19 ( 1974) 967-985. 

NotesEmbed ?

top

You must be logged in to post comments.