A set oriented approach to global optimal control
ESAIM: Control, Optimisation and Calculus of Variations (2004)
- Volume: 10, Issue: 2, page 259-270
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topJunge, Oliver, and Osinga, Hinke M.. "A set oriented approach to global optimal control." ESAIM: Control, Optimisation and Calculus of Variations 10.2 (2004): 259-270. <http://eudml.org/doc/245320>.
@article{Junge2004,
abstract = {We describe an algorithm for computing the value function for “all source, single destination” discrete-time nonlinear optimal control problems together with approximations of associated globally optimal control strategies. The method is based on a set oriented approach for the discretization of the problem in combination with graph-theoretic techniques. The central idea is that a discretization of phase space of the given problem leads to an (all source, single destination) shortest path problem on a finite graph. The method is illustrated by two numerical examples, namely a single pendulum on a cart and a parametrically driven inverted double pendulum.},
author = {Junge, Oliver, Osinga, Hinke M.},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {global optimal control; value function; set oriented method; shortest path},
language = {eng},
number = {2},
pages = {259-270},
publisher = {EDP-Sciences},
title = {A set oriented approach to global optimal control},
url = {http://eudml.org/doc/245320},
volume = {10},
year = {2004},
}
TY - JOUR
AU - Junge, Oliver
AU - Osinga, Hinke M.
TI - A set oriented approach to global optimal control
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2004
PB - EDP-Sciences
VL - 10
IS - 2
SP - 259
EP - 270
AB - We describe an algorithm for computing the value function for “all source, single destination” discrete-time nonlinear optimal control problems together with approximations of associated globally optimal control strategies. The method is based on a set oriented approach for the discretization of the problem in combination with graph-theoretic techniques. The central idea is that a discretization of phase space of the given problem leads to an (all source, single destination) shortest path problem on a finite graph. The method is illustrated by two numerical examples, namely a single pendulum on a cart and a parametrically driven inverted double pendulum.
LA - eng
KW - global optimal control; value function; set oriented method; shortest path
UR - http://eudml.org/doc/245320
ER -
References
top- [1] R.A. Brooks and T. Lozano-Pérez, A subdivision algorithm in configuration space for findpath with rotation. IEEE Systems, Man and Cybernetics 15 (1985) 224-233.
- [2] M. Broucke, A geometric approach to bisimulation and verification of hybrid systems, in HSCC 1999, LNCS, F.W. Vaandragerand and J.H. van Schuppen Eds., Springer 1569 (1999) 61-75. Zbl0928.93024
- [3] M. Broucke, M.D. Di Benedetto, S. Di Gennaro and A. Sangiovanni-Vincentelli, Theory of optimal control using bisimulations, in HSCC 2000, LNCS, N. Lynch and B. Krogh Eds., Springer 1790 (2000) 89-102. Zbl0963.93059
- [4] M. Broucke, M.D. Di Benedetto, S. Di Gennaro and A. Sangiovanni-Vincentelli, Optimal control using bisimulations: Implementation, in HSCC 2001, LNCS, M.D. Di Benedetto and A. Sangiovanni-Vincentelli Eds., Springer 2034 (2001) 175-188. Zbl0995.49021
- [5] T.H. Cormen, C.E. Leierson and R.L. Rivest, Introduction to Algorithms. Cambridge, Mass. MIT Press, New York McGraw-Hill (1990). Zbl1047.68161MR1066870
- [6] M. Dellnitz and A. Hohmann, A subdivision algorithm for the computation of unstable manifolds and global attractors. Numer. Math. 75 (1997) 293-317. Zbl0883.65060MR1427710
- [7] M. Dellnitz, G. Froyland and O. Junge, The algorithms behind GAIO – Set oriented numerical methods for dynamical systems, in Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, B. Fiedler Ed., Springer (2001) 145-174. Zbl0998.65126
- [8] E.W. Dijkstra, A Note on Two Problems in Connection with Graphs. Numer. Math. 5 (1959) 269-271. Zbl0092.16002MR107609
- [9] M. Falcone, Numerical solution of Dynamic Programming equations, in Viscosity solutions and deterministic optimal control problems, M. Bardi and I. Capuzzo Dolcetta Eds., Birkhäuser (1997).
- [10] Z. Galias, Interval methods for rigorous investigations of periodic orbits. Int. J. Bifur. Chaos 11 (2001) 2427-2450. Zbl1091.65511MR1862915
- [11] L. Grüne, An Adaptive Grid Scheme for the discrete Hamilton-Jacobi-Bellman Equation. Numer. Math. 75 (1997) 319-337. Zbl0880.65045MR1427711
- [12] P.E. Gill, W. Murray, M.A. Saunders and M.H. Wright, User’s Guide for NPSOL (Version 4.0): a Fortran package for nonlinear programming, Report SOL 86-2, Systems Optimization Laboratory, Stanford University (1986).
- [13] J. Hauser and H.M. Osinga, On the geometry of optimal control: the inverted pendulum example, in Proc. Amer. Control Conf., Arlington VA (2001) 1721-1726.
- [14] A. Jadbabaie, J. Yu and J. Hauser, Unconstrained receding horizon control of nonlinear systems. IEEE Trans. Automat. Control 46 (2001) 776-783. Zbl1009.93028MR1833035
- [15] O. Junge, Rigorous discretization of subdivision techniques, in Proc. Int. Conf. Differential Equations Equadiff 99, B. Fiedler, K. Gröger and J. Sprekels Eds., World Scientific 2 (2000) 916-918. Zbl0963.65536MR1870259
- [16] L.C. Polymenakos, D.P. Bertsekas and J.N. Tsitsiklis, Implementation of efficient algorithms for globally optimal trajectories. IEEE Trans. Automat. Control 43 (1998) 278-283. Zbl1032.49037MR1605994
- [17] K. Schiele, On the stabilization of a parametrically driven inverted double pendulum. Z. Angew. Math. Mech. 77 (1997) 143-146. Zbl0886.70015MR1442705
- [18] J.A. Sethian and A. Vladimirsky, Ordered upwind methods for static Hamilton-Jacobi equations. Proc. Nat. Acad. Sci. USA 98 (2001) 11069-11074. Zbl1002.65112MR1854545
- [19] E.D. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems, Texts in Applied Mathematics 6, Springer (1998). Zbl0945.93001MR1640001
- [20] D. Szolnoki, Viability kernels and control sets. ESAIM: COCV 5 (2000) 175-185. Zbl0940.93009MR1744611
- [21] J.N. Tsitsiklis, Efficient algorithms for globally optimal trajectories. IEEE Trans. Automat. Control 40 (1995) 1528-1538. Zbl0831.93028MR1347833
- [22] O. von Stryk, User’s Guide for DIRCOL (Version 2.1): a direct collocation method for the numerical solution of optimal control problems. TU Darmstadt (2000).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.