Control Lyapunov functions for homogeneous “Jurdjevic-Quinn” systems
Ludovic Faubourg; Jean-Baptiste Pomet
ESAIM: Control, Optimisation and Calculus of Variations (2000)
- Volume: 5, page 293-311
- ISSN: 1292-8119
Access Full Article
topHow to cite
topFaubourg, Ludovic, and Pomet, Jean-Baptiste. "Control Lyapunov functions for homogeneous “Jurdjevic-Quinn” systems." ESAIM: Control, Optimisation and Calculus of Variations 5 (2000): 293-311. <http://eudml.org/doc/90572>.
@article{Faubourg2000,
author = {Faubourg, Ludovic, Pomet, Jean-Baptiste},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {feedback stabilization; control Lyapunov functions; Lyapunov design},
language = {eng},
pages = {293-311},
publisher = {EDP Sciences},
title = {Control Lyapunov functions for homogeneous “Jurdjevic-Quinn” systems},
url = {http://eudml.org/doc/90572},
volume = {5},
year = {2000},
}
TY - JOUR
AU - Faubourg, Ludovic
AU - Pomet, Jean-Baptiste
TI - Control Lyapunov functions for homogeneous “Jurdjevic-Quinn” systems
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2000
PB - EDP Sciences
VL - 5
SP - 293
EP - 311
LA - eng
KW - feedback stabilization; control Lyapunov functions; Lyapunov design
UR - http://eudml.org/doc/90572
ER -
References
top- [1] D. Aeyels, Stabilization of a class of nonlinear systems by smooth feedback control. Systems Control Lett. 5 ( 1985) 289-294. Zbl0569.93056MR791542
- [2] Z. Artstein, Stabilization with relaxed control. Nonlinear Anal. TMA 7 ( 1983) 1163-1173. Zbl0525.93053MR721403
- [3] A. Bacciotti, Local stabilizability of nonlinear control systems. World Scientifîc, Singapore, River Edge, London, Ser. Adv. Math. Appl. Sci. 8 ( 1992). Zbl0757.93061MR1148363
- [4] R.W. Brockett, Asymptotic stability and feedback stabilization, in Differential Geometric Control Theory, edited by R.W. Brockett, R.S. Millman and H.J. Sussmann. Basel-Boston, Birkäuser ( 1983) 181-191. Zbl0528.93051MR708502
- [5] R.T. Bupp, D.S. Bernstein and V.T. Coppola, A benchmark problem for nonlinear control design. Internat J. Robust Nonlinear Control 8 ( 1998) 307-310. MR1611573
- [6] R.T. Bupp, D.S. Bernstein and V.T. Coppola, Experimental implementation of integrator back-stepping and passive nonlinear controllers on the RTAC testbed. Internat J. Robust Nonlinear Control 8 ( 1998) 435-457. Zbl0925.93352MR1611580
- [7] J.-M. Coron, L. Praly and A.R. Teel, Feedback stabilization of nonlinear system: Sufficient conditions and lyapunov and input-output techniques, in Trends in Control, a European Perspective, edited by A. Isidori. Springer-Verlag ( 1995) 283-348. MR1448452
- [8] L. Faubourg, La déformation de fonctions de Lyapunov, Rapport de DEA d'automatique et informatique industrielle. INRIA-Université de Lille 1 ( 1997).
- [9] L. Faubourg and J.-B. Pomet, Strict control Lyapunov functions for homogeneous Jurdjevic-Quinn type systems, in Nonlinear Control Systems Design Symposium (NOLCOS'98), edited by H. Huijberts, H. Nijmeijer, A. van der Schaft and J. Scherpen. IFAC ( 1998) 823-829.
- [10] L. Faubourg and J.-B. Pomet, Design of control Lyapunov functions for "Jurdjevic-Quinn" systems, in Stability and Stabilization of Nonlinear Systems, edited by D. Aeyels et al. Springer-Verlag, Lecture Notes in Contr. & Inform. Sci. ( 1999) 137-150. Zbl0945.93607MR1714587
- [11] J.-P. Gauthier, Structure des Systèmes non-linéaires. Éditions du CNRS, Paris ( 1984). Zbl0606.58001MR767635
- [12] W. Hahn, Stability of Motion. Springer-Verlag, Berlin, New-York, Grundlehren Math. Wiss. 138 ( 1967). Zbl0189.38503MR223668
- [13] V. Jurdjevic and J.P. Quinn, Controllability and stability. J. Differential Equations 28 ( 1978) 381-389. Zbl0417.93012MR494275
- [14] M. Kawski, Homogeneous stabilizing feedback laws. Control Theory and Adv. Technol. 6 ( 1990), 497-516. MR1092775
- [15] H.K. Khalil, Nonlinear Systems. MacMillan, New York, Toronto, Singapore ( 1992). Zbl0969.34001MR1201326
- [16] J. Kurzweil, On the inversion of Ljapunov's second theorem on stability of motion. AMS Trans., Ser. II 24 ( 1956) 19-77. Zbl0127.30703
- [17] J.-P. LaSalle, Stability theory for ordinary differential equations. J. Differential Equations 4 ( 1968) 57-65. Zbl0159.12002MR222402
- [18] W. Liu, Y. Chitour and E. Sontag, Remarks on finite gain stabilizability of linear systems subject to input saturation, in 32th IEEE Conf. on Decision and Control. San Antonio, USA ( 1993) 1808-1813.
- [19] F. Mazenc, Stabilisation de trajectoires, ajout d'intégration, commandes saturées, Thèse de doctorat. École des Mines de Paris ( 1989).
- [20] P. Morin, Robust stabilization of the angular velocity of a rigid body with two actuators. European J. Control 2 ( 1996) 51-56. Zbl0858.93057
- [21] R. Outbib and G. Sallet, Stabilizability of the angular velocity of a rigid body revisited. Systems Control Lett. 18 ( 1992) 93-98. Zbl0743.93082MR1149353
- [22] G. Sallet, Historique des techniques de Jurdjevic-Quinn(private communication).
- [23] R. Sépulchre, M. Janković and P.V. Kokotović, Constructive Nonlinear Control. Springer-Verlag, Comm. Control Engrg. Ser. ( 1997). Zbl1067.93500MR1481435
- [24] E.D. Sontag, Feedback stabilization of nonlinear systems, in Robust control of linear systems and nonlinear control, Vol. 2 of proceedings of MTNS'89, edited by M.A. Kaashoek, J.H. van Schuppen and A. Ran. Basel-Boston, Birkhäuser ( 1990) 61-81. Zbl0735.93063MR1115377
- [25] M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol. 1. Publish or Perish, Houston, second Ed. ( 1979). Zbl0439.53005
- [26] J. Tsinias, Remarks on feedback stabilizability of homogeneous systems. Control Theory and Adv. Technol. 6 ( 1990) 533-542. MR1092777
- [27] J. Zhao and I. Kanellakopoulos, Flexible back-stepping design for tracking and disturbance attenuation. Internat J. Robust Nonlinear Control 8 ( 1998) 331-348. Zbl0925.93824MR1611575
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.