Nonlocal variational problems arising in long wave propagation
ESAIM: Control, Optimisation and Calculus of Variations (2000)
- Volume: 5, page 501-528
- ISSN: 1292-8119
Access Full Article
topHow to cite
topLopes, Orlando. "Nonlocal variational problems arising in long wave propagation." ESAIM: Control, Optimisation and Calculus of Variations 5 (2000): 501-528. <http://eudml.org/doc/90580>.
@article{Lopes2000,
author = {Lopes, Orlando},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {stability of traveling waves; constrained variational problems},
language = {eng},
pages = {501-528},
publisher = {EDP Sciences},
title = {Nonlocal variational problems arising in long wave propagation},
url = {http://eudml.org/doc/90580},
volume = {5},
year = {2000},
}
TY - JOUR
AU - Lopes, Orlando
TI - Nonlocal variational problems arising in long wave propagation
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2000
PB - EDP Sciences
VL - 5
SP - 501
EP - 528
LA - eng
KW - stability of traveling waves; constrained variational problems
UR - http://eudml.org/doc/90580
ER -
References
top- [1] R. Adams, Sobolev Spaces. Academic Press ( 1975). Zbl0314.46030MR450957
- [2] J. Albert, Concentration-Compactness and stability-wave solutions to nonlocal equations. Contemp. Math. 221, AMS ( 1999) 1-30. Zbl0936.35159MR1647189
- [3] J. Albert, J. Bona and D. Henry, Sufficient conditions for stability of solitary-wave solutions of model equations for long waves. Phys. D 24 ( 1987) 343-366. Zbl0634.35079MR887857
- [4] J. Albert, J. Bona and J.C. Saut, Model equations for waves in stratified fluids. Proc. Roy. Soc. London Ser. A 453 ( 1997) 1233-1260. Zbl0886.35111MR1455330
- [5] J. Bergh and J. Lofstrom, Interpolation Spaces. Springer-Verlag, New-York/Berlin ( 1976). Zbl0344.46071MR482275
- [6] P. Blanchard and E. Bruning, Variational Methods in Mathematical Physics. Springer-Verlag ( 1992). Zbl0756.49023MR1230382
- [7] H. Brezis and E. Lieb, Minimum Action Solutions of Some Vector Field Equations. Comm. Math. Phys. 96 ( 1984) 97-113. Zbl0579.35025MR765961
- [8] A. de Bouard, Stability and instability of some nonlinear dispersive solitary waves in higher dimension. Proc. Roy. Soc. Edinburgh Sect. A 126 ( 1996) 89-112. Zbl0861.35094MR1378834
- [9] I. Catto and P.L. Lions, Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories, Part I. Comm. Partial Differential Equations 17 ( 1992) 1051-1110. Zbl0767.35065MR1179279
- [10] T. Cazenave and P.L. Lions, Orbital Stability of Standing waves for Some Nonlinear Schrödinger Equations. Comm. Math. Phys. 85 ( 1982) 549-561. Zbl0513.35007MR677997
- [11] S. Coleman, V. Glazer and A. Martin, Action Minima among to a class of Euclidean Scalar Field Equations. Comm. Math. Phys. 58 ( 1978) 211-221. MR468913
- [12] T. Colin and M. Weinstein, On the ground states of vector nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Phys. Théor. 65 ( 1996) 57-79. Zbl0863.35101MR1407166
- [13] G.H. Derrick, Comments on Nonlinear Wave Equations as Models for Elementary Particles. J. Math. Phys. 5, 9 ( 1964) 1252-1254. MR174304
- [14] M. Grillakis, J. Shatah and W. Strauss, Stability of Solitary Waves in the Presence of Symmetry I. J. Funct. Anal. 74 ( 1987) 160-197. Zbl0656.35122MR901236
- [15] L. Hormander, Estimates for translation invariant operators in Lp spaces. Acta Math. 104 ( 1960) 93-140. Zbl0093.11402MR121655
- [16] O. Kavian, Introduction à la théorie des points critiques et applications aux problèmes elliptiques. Springer, Heidelberg ( 1993). Zbl0797.58005MR1276944
- [17] P. Lax, Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math. 21 ( 1968) 467-490. Zbl0162.41103MR235310
- [18] S. Levandosky, Stability and instability of fourth-order solitary waves. J. Dynam. Differential Equations 10 ( 1998) 151-188. Zbl0893.35079
- [19] E. Lieb, Existence and uniqueness of minimizing solutions of Choquard's nonlinear equation. Stud. Appl. Math. 57 ( 1977) 93-105. Zbl0369.35022
- [20] P.L. Lions, The Concentration-Compactness Principle in the Calculus of Variations. Ann. Inst. H. Poincaré Anal. Non Linéaire 1 ( 1984) Part I 109-145, Part II 223-283. Zbl0704.49004
- [21] P.L. Lions, Solutions of Hartree-Fock Equations for Coulomb Systems. Comm. Math. Phys. 109 ( 1987) 33-97. Zbl0618.35111
- [22] O. Lopes, Radial symmetry of minimizers for some translation and rotation invariant functionals. J. Differential Equations 124 ( 1996) 378-388. Zbl0842.49004
- [23] O. Lopes, Sufficient conditions for minima of some translation invariant functionals. Differential Integral Equations 10 ( 1997) 231-244. Zbl0891.49001MR1424809
- [24] O. Lopes, A Constrained Minimization Problem with Integrals on the Entire Space. Bol. Soc. Brasil Mat. (N.S.) 25 ( 1994) 77-92. Zbl0805.49005MR1274763
- [25] O. Lopes, Variational Systems Defined by Improper Integrals, edited by L. Magalhaes et al., International Conference on Differential Equations. World Scientific ( 1998) 137-153. Zbl0961.35034MR1639339
- [26] O. Lopes, Variational problems defined by integrals on the entire space and periodic coefficients. Comm. Appl. Nonlinear Anal. 5 ( 1998) 87-120. Zbl1108.49300MR1621231
- [27] J. Maddocks and R. Sachs, On the stability of KdV multi-solitons. Comm. Pure. Appl. Math. 46 ( 1993) 867-902. Zbl0795.35107MR1220540
- [28] J.C. Saut, Sur quelques généralizations de l'équation de Korteweg-de Vries. J. Math. Pure Appl. (9) 58 ( 1979) 21-61. Zbl0449.35083MR533234
- [29] H. Triebel, Interpolation Theory, Functions Spaces, Differential Operators. North-Holland, Amsterdam ( 1978). Zbl0387.46032MR503903
- [30] M. Weinstein, Liapunov Stability of Ground States of Nonlinear Dispersive Evolution Equations. Comm. Pure Appl. Math. 39 ( 1986) 51-68. Zbl0594.35005MR820338
- [31] M. Weinstein, Existence and dynamic stability of solitary wave solution of equations arising in long wave propagation. Comm. Partial Differential Equations 12 ( 1987) 1133-1173. Zbl0657.73040MR886343
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.