# On the representation of effective energy densities

ESAIM: Control, Optimisation and Calculus of Variations (2000)

- Volume: 5, page 529-538
- ISSN: 1292-8119

## Access Full Article

top## How to cite

topLarsen, Christopher J.. "On the representation of effective energy densities." ESAIM: Control, Optimisation and Calculus of Variations 5 (2000): 529-538. <http://eudml.org/doc/90581>.

@article{Larsen2000,

author = {Larsen, Christopher J.},

journal = {ESAIM: Control, Optimisation and Calculus of Variations},

keywords = {relaxation; quasiconvexity; integral representation; bulk and surface integrals},

language = {eng},

pages = {529-538},

publisher = {EDP Sciences},

title = {On the representation of effective energy densities},

url = {http://eudml.org/doc/90581},

volume = {5},

year = {2000},

}

TY - JOUR

AU - Larsen, Christopher J.

TI - On the representation of effective energy densities

JO - ESAIM: Control, Optimisation and Calculus of Variations

PY - 2000

PB - EDP Sciences

VL - 5

SP - 529

EP - 538

LA - eng

KW - relaxation; quasiconvexity; integral representation; bulk and surface integrals

UR - http://eudml.org/doc/90581

ER -

## References

top- [1] R. Choksi and I. Fonseca, Bulk and interfacial energy densities for structured deformations of continua, Arch. Rational Mech. Anal. 138 ( 1997) 37-103. Zbl0891.73078MR1463803
- [2] B. Dacorogna, Direct Methods in the Calculus of Variations. Springer-Verlag, Berlin ( 1989). Zbl0703.49001MR990890
- [3] E. De Giorgi and L. Ambrosio, Un nuovo tipo di funzionale del calcolo delle variazioni. Atti. Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Suppl. 82 ( 1988) 199-210. Zbl0715.49014MR1152641
- [4] G. Del Piero and D.R. Owen, Structured deformations of continua. Arch. Rational Mech. Anal. 124 ( 1993) 99-155. Zbl0795.73005MR1237908
- [5] L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton ( 1992). Zbl0804.28001MR1158660
- [6] I. Fonseca, S. Müller and P. Pedregal, Analysis of concentration and oscillation effects generated by gradients. SIAM J. Math. Anal. 29 ( 1998) 736-756. Zbl0920.49009MR1617712
- [7] J. Kristensen, Lower semicontinuity in spaces of weakly differentiable functions. Math. Ann. 313 ( 1999) 653-710. Zbl0924.49012MR1686943
- [8] C.J. Larsen, Quasiconvexincation in W1,1 and optimal jump microstructure in BV relaxation. SIAM J. Math. Anal. 29 ( 1998) 823-848. Zbl0915.49005MR1617734
- [9] S. Müller, On quasiconvex functions which are homogeneous of degree 1. Indiana Univ. Math. J. 41 ( 1992) 295-301. Zbl0736.26006MR1160915

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.