On the quasiconvex exposed points

Kewei Zhang

ESAIM: Control, Optimisation and Calculus of Variations (2001)

  • Volume: 6, page 1-19
  • ISSN: 1292-8119

Abstract

top
The notion of quasiconvex exposed points is introduced for compact sets of matrices, motivated from the variational approach to material microstructures. We apply the notion to give geometric descriptions of the quasiconvex extreme points for a compact set. A weak version of Straszewicz type density theorem in convex analysis is established for quasiconvex extreme points. Some examples are examined by using known explicit quasiconvex functions.

How to cite

top

Zhang, Kewei. "On the quasiconvex exposed points." ESAIM: Control, Optimisation and Calculus of Variations 6 (2001): 1-19. <http://eudml.org/doc/90589>.

@article{Zhang2001,
abstract = {The notion of quasiconvex exposed points is introduced for compact sets of matrices, motivated from the variational approach to material microstructures. We apply the notion to give geometric descriptions of the quasiconvex extreme points for a compact set. A weak version of Straszewicz type density theorem in convex analysis is established for quasiconvex extreme points. Some examples are examined by using known explicit quasiconvex functions.},
author = {Zhang, Kewei},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {quasiconvex functions; quasiconvex hull; homogeneous Young measure; quasiconvex exposed points; Straszewicz theorem; quasiconvexity; extreme points; material microstructures},
language = {eng},
pages = {1-19},
publisher = {EDP-Sciences},
title = {On the quasiconvex exposed points},
url = {http://eudml.org/doc/90589},
volume = {6},
year = {2001},
}

TY - JOUR
AU - Zhang, Kewei
TI - On the quasiconvex exposed points
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2001
PB - EDP-Sciences
VL - 6
SP - 1
EP - 19
AB - The notion of quasiconvex exposed points is introduced for compact sets of matrices, motivated from the variational approach to material microstructures. We apply the notion to give geometric descriptions of the quasiconvex extreme points for a compact set. A weak version of Straszewicz type density theorem in convex analysis is established for quasiconvex extreme points. Some examples are examined by using known explicit quasiconvex functions.
LA - eng
KW - quasiconvex functions; quasiconvex hull; homogeneous Young measure; quasiconvex exposed points; Straszewicz theorem; quasiconvexity; extreme points; material microstructures
UR - http://eudml.org/doc/90589
ER -

References

top
  1. [1] E.M. Alfsen, Compact Convex Sets and Boundary Integrals. Springer-Verlag (1971). Zbl0209.42601MR445271
  2. [2] E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations. Arch. Rational Mech. Anal. 86 (1984) 125–145. Zbl0565.49010
  3. [3] H. Berliocchi and J.M. Lasry, Intégrandes normales et mesures paramétrées en calcul des variations. Bull. Soc. Math. France 101 (1973) 129–184. Zbl0282.49041
  4. [4] J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63 (1977) 337–403. Zbl0368.73040
  5. [5] J.M. Ball, A version of the fundamental theorem of Young measures, in Partial Differential Equations and Continuum Models of Phase Transitions, edited by M. Rascle, D. Serre and M. Slemrod. Springer-Verlag (1989) 207–215. Zbl0991.49500
  6. [6] J.M. Ball, Sets of gradients with no rank-one connections. J. Math. Pures Appl. 69 (1990) 241–259. Zbl0644.49011
  7. [7] K. Bhattacharya, N.B. Firoozye, R.D. James and R.V. Kohn, Restrictions on Microstructures. Proc. Roy. Soc. Edinburgh Sect. A 124 (1994) 843–878. Zbl0808.73063
  8. [8] J.M. Ball and R.D. James, Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal. 100 (1987) 13–52. Zbl0629.49020
  9. [9] J.M. Ball and R.D. James, Proposed experimental tests of a theory of fine microstructures and the two-well problem. Philos. Trans. Roy. Soc. London Ser. A 338 (1992) 389–450. Zbl0758.73009
  10. [10] J.M. Ball and K.-W. Zhang, Lower semicontinuity and multiple integrals and the biting lemma. Proc. Roy. Soc. Edinburgh Sect. A 114 (1990) 367–379. Zbl0716.49011
  11. [11] M. Chipot and D. Kinderlehrer, Equilibrium configurations of crystals. Arch. Rational Mech. Anal. 103 (1988) 237–277. Zbl0673.73012
  12. [12] B. Dacorogna, Direct Methods in the Calculus of Variations. Springer-Verlag (1989). Zbl0703.49001MR990890
  13. [13] B. Dacorogna and P. Marcellini, Théorème d’existence dans le cas scalaire et vectoriel pour les équations de Hamilton-Jacobi. C. R. Acad. Sci. Paris Sér. I Math. 322 (1996) 237–240. Zbl0846.35028
  14. [14] B. Dacorogna and P. Marcellini, Sur le problème de Cauchy-Dirichlet pour les systèmes d’équations non linéaires du premier ordre. C. R. Acad. Sci. Paris Sér. I Math. 323 (1996) 599–602. Zbl0860.35020
  15. [15] B. Dacorogna and P. Marcellini, General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial case. Acta Math. 178 (1997) 1–37. Zbl0901.49027
  16. [16] B. Dacorogna and P. Marcellini, Cauchy-Dirichlet problem for first order nonlinear systems. J. Funct. Anal. 152 (1998) 404–446. Zbl0911.35034
  17. [17] B. Dacorogna and P. Marcellini, Implicit second order partial differential equations. Ann. Scuola. Norm. Sup. Pisa Cl. Sci. (4) 25 (1997) 299–328. Zbl1003.35043
  18. [18] J.L. Kelly, General Topology. van Nostrand (1955). Zbl0066.16604MR70144
  19. [19] D. Kinderlehrer and P. Pedregal, Characterizations of Young measures generated by gradients. Arch. Rational Mech. Anal 115 (1991) 329–365. Zbl0754.49020
  20. [20] R.V. Kohn, The relaxation of a double well energy. Cont. Mech. Therm. 3 (1991) 981–1000. Zbl0825.73029
  21. [21] S.R. Lay, Convex Sets and Their Applications. John Wiley & Sons (1982). Zbl0492.52001MR655598
  22. [22] C.B. Morrey Jr., Multiple integrals in the calculus of variations. Springer (1966). Zbl0142.38701
  23. [23] S. Müller and V. Šverák, Attainment results for the two-well problem by convex integration. Preprint (1993). Zbl0930.35038MR1449410
  24. [24] Yu.G. Reshetnak, Liouville’s theorem on conformal mappings under minimal regularity assumptions. Siberian Math. J. 8 (1967) 631–653. Zbl0167.36102
  25. [25] R.T. Rockafellar, Convex Analysis. Princeton University Press (1970). Zbl0193.18401MR274683
  26. [26] W. Rudin, Functional Analysis. McGraw-Hill (1973). Zbl0253.46001MR365062
  27. [27] V. Šverák, On regularity for the Monge-Ampère equations. Preprint. 
  28. [28] V. Šverák, New examples of quasiconvex functions. Arch. Rational Mech. Anal. 119 (1992) 293–330. Zbl0823.26009
  29. [29] V. Šverák, On the problem of two wells, in Microstructure and phase transitions, edited by D. Kinderlehrer, R.D. James, M. Luskin and J. Ericksen. Springer, IMA J. Appl. Math. 54 (1993) 183–189. Zbl0797.73079
  30. [30] V. Šverák, On Tartar’s conjecture. Ann. Inst. H. Poincaré 10 (1993) 405–412. Zbl0820.35022
  31. [31] L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, IV, edited by R.J. Knops. Pitman (1979). Zbl0437.35004MR584398
  32. [32] K.-W. Zhang, A construction of quasiconvex functions with linear growth at infinity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) XIX (1992) 313–326. Zbl0778.49015
  33. [33] K.-W. Zhang, On connected subsets of M 2 × 2 without rank-one connections. Proc. Roy. Soc. Edinburgh Sect. A 127 (1997) 207–216. Zbl0868.58013
  34. [34] K.-W. Zhang, On various semiconvex hulls in the calculus of variations. Calc. Var. Partial Differential Equations 6 (1998) 143–160. Zbl0896.49005
  35. [35] K.-W. Zhang, On the structure of quasiconvex hulls. Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998) 663–686. Zbl0917.49014

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.