On Tartar's conjecture

Vladimir Šverák

Annales de l'I.H.P. Analyse non linéaire (1993)

  • Volume: 10, Issue: 4, page 405-412
  • ISSN: 0294-1449

How to cite

top

Šverák, Vladimir. "On Tartar's conjecture." Annales de l'I.H.P. Analyse non linéaire 10.4 (1993): 405-412. <http://eudml.org/doc/78309>.

@article{Šverák1993,
author = {Šverák, Vladimir},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Young measures; fully nonlinear elliptic systems; regularity},
language = {eng},
number = {4},
pages = {405-412},
publisher = {Gauthier-Villars},
title = {On Tartar's conjecture},
url = {http://eudml.org/doc/78309},
volume = {10},
year = {1993},
}

TY - JOUR
AU - Šverák, Vladimir
TI - On Tartar's conjecture
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1993
PB - Gauthier-Villars
VL - 10
IS - 4
SP - 405
EP - 412
LA - eng
KW - Young measures; fully nonlinear elliptic systems; regularity
UR - http://eudml.org/doc/78309
ER -

References

top
  1. [1] J.M. Ball, A Version of the Fundamental Theorem for Young Measures, in Partial Differential Equations and Continuum Models of Phase Transitions, M. RASCLE, D. SERRE and M. SLEMROD Eds., pp. 107-215, Springer-Verlag. Zbl0991.49500MR1036070
  2. [2] J.M. Ball, Sets of Gradients with No Rank-One Connections, J. Math. pures et appl., Vol. 69, 1990, pp. 241-259. Zbl0644.49011MR1070479
  3. [3] J.M. Ball and R.D. James, Fine Phase Mixtures as Minimizers of Energy, Arch. Rat. Mech. Anal., Vol. 100, 1987, pp. 13-52. Zbl0629.49020MR906132
  4. [4] J.M. Ball and R.D. James, Proposed Experimental Tests of a Theory of Fine Microstructures and the Two-Well Problem, preprint, 1990. 
  5. [5] L.C. Evans, Classical Solutions of Fully Nonlinear Second Order Elliptic Equations, Comm. Pure Appl. Math., Vol. 25, 1982, pp. 333-363. Zbl0469.35022MR649348
  6. [6] M. Giaquinta, Multiple Integrals in the Calculus of Variations, Princeton University Press, 1983. Zbl0516.49003MR717034
  7. [7] N. Firoozye, R.D. James and R. Kohn (to appear). 
  8. [8] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Second Edition, Springer, 1983. Zbl0562.35001MR737190
  9. [9] D. Kinderlehrer, Remarks about equilibrium configurations of crystals, in Symp. Material Instabilities in Continuum Mechanics, pp. 217-242, J. M. BALL Ed., Heriot-Watt, Oxford University Press, 1988. Zbl0850.73037MR970527
  10. [10] J.P. Matos, Young Measures and the Absence of Fine Microstructures in the α — β Quartz Phase Transition, preprint, 1991. 
  11. [11] Ch.B. Morrey, Multiple Integrals in the Calculus of Variations, Springer, 1966. Zbl0142.38701
  12. [12] V. Šverák, On the Problem of Two Wells (to appear). Zbl0797.73079MR1320537
  13. [13] V. Šverák (to appear). 
  14. [14] L. Tartar, The Compensated Compactness Method Applied to Systems of Conservations Laws, in Systems of Nonlinear Partial Differential Equations, J. M. BALL Ed., NATO ASI Series, Vol. C111, Reidel, 1982. Zbl0536.35003MR725524

Citations in EuDML Documents

top
  1. Pablo Pedregal, Some remarks on existence results for optimal boundary control problems
  2. Pablo Pedregal, Some remarks on existence results for optimal boundary control problems
  3. Baisheng Yan, Remarks on W 1 , p -stability of the conformal set in higher dimensions
  4. Kewei Zhang, On the structure of quasiconvex hulls
  5. Kewei Zhang, On the quasiconvex exposed points
  6. Kewei Zhang, On the quasiconvex exposed points
  7. Mikhail A. Sychev, Characterization of homogeneous gradient young measures in case of arbitrary integrands

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.