Integral representation and Γ-convergence of variational integrals with p(x)-growth

Alessandra Coscia; Domenico Mucci

ESAIM: Control, Optimisation and Calculus of Variations (2010)

  • Volume: 7, page 495-519
  • ISSN: 1292-8119

Abstract

top
We study the integral representation properties of limits of sequences of integral functionals like   f ( x , D u ) d x   under nonstandard growth conditions of (p,q)-type: namely, we assume that | z | p ( x ) f ( x , z ) L ( 1 + | z | p ( x ) ) . Under weak assumptions on the continuous function p(x), we prove Γ-convergence to integral functionals of the same type. We also analyse the case of integrands f(x,u,Du) depending explicitly on u; finally we weaken the assumption allowing p(x) to be discontinuous on nice sets.

How to cite

top

Coscia, Alessandra, and Mucci, Domenico. "Integral representation and Γ-convergence of variational integrals with p(x)-growth." ESAIM: Control, Optimisation and Calculus of Variations 7 (2010): 495-519. <http://eudml.org/doc/90633>.

@article{Coscia2010,
abstract = { We study the integral representation properties of limits of sequences of integral functionals like  $\int f(x,Du)\,\{\rm d\}x$  under nonstandard growth conditions of (p,q)-type: namely, we assume that $$ \vert z\vert^\{p(x)\}\leq f(x,z)\leq L(1+\vert z\vert^\{p(x)\})\,. $$ Under weak assumptions on the continuous function p(x), we prove Γ-convergence to integral functionals of the same type. We also analyse the case of integrands f(x,u,Du) depending explicitly on u; finally we weaken the assumption allowing p(x) to be discontinuous on nice sets. },
author = {Coscia, Alessandra, Mucci, Domenico},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Integral representation; Γ-convergence; nonstandard growth conditions.; integral representation; Gamma-convergence; nonstandard growth conditions; integral functionals},
language = {eng},
month = {3},
pages = {495-519},
publisher = {EDP Sciences},
title = {Integral representation and Γ-convergence of variational integrals with p(x)-growth},
url = {http://eudml.org/doc/90633},
volume = {7},
year = {2010},
}

TY - JOUR
AU - Coscia, Alessandra
AU - Mucci, Domenico
TI - Integral representation and Γ-convergence of variational integrals with p(x)-growth
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 7
SP - 495
EP - 519
AB - We study the integral representation properties of limits of sequences of integral functionals like  $\int f(x,Du)\,{\rm d}x$  under nonstandard growth conditions of (p,q)-type: namely, we assume that $$ \vert z\vert^{p(x)}\leq f(x,z)\leq L(1+\vert z\vert^{p(x)})\,. $$ Under weak assumptions on the continuous function p(x), we prove Γ-convergence to integral functionals of the same type. We also analyse the case of integrands f(x,u,Du) depending explicitly on u; finally we weaken the assumption allowing p(x) to be discontinuous on nice sets.
LA - eng
KW - Integral representation; Γ-convergence; nonstandard growth conditions.; integral representation; Gamma-convergence; nonstandard growth conditions; integral functionals
UR - http://eudml.org/doc/90633
ER -

References

top
  1. E. Acerbi, G. Bouchitté and I. Fonseca, Relaxation of convex functionals: The gap phenomenon. Ann. Inst. H. Poincaré (2003).  
  2. E. Acerbi and G. Mingione, Regularity results for a class of functionals with non standard growth. Arch. Rational Mech. Anal.156 (2001) 121-140.  
  3. E. Acerbi and G. Mingione, Regularity results for a class of quasiconvex functionals with non standard growth. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4XXX (2001) 311-339.  
  4. R.A. Adams, Sobolev spaces. Academic Press, New York (1975).  
  5. Yu.A. Alkutov, The Harnack inequality and the Hölder property of solutions of nonlinear elliptic equations with a nonstandard growth condition. Differential Equations33 (1998) 1653-1663.  
  6. G. Bouchitté, I. Fonseca and J. Malý, The effective bulk energy of the relaxed energy of multiple integrals below the growth exponent. Proc. Roy. Soc. Edinburgh Ser. A128 (1988) 463-479.  
  7. G. Buttazzo, Semicontinuity, relaxation and integral representation in the calculus of variations. Longman, Harlow, Pitman Res. Notes in Math. 207 (1989).  
  8. G. Buttazzo and G. Dal Maso, A characterization of nonlinear functionals on Sobolev spaces which admit an integral representation with a Carathéodory integrand. J. Math. Pures Appl.64 (1985) 337-361.  
  9. G. Buttazzo and G. Dal Maso, Integral representation and relaxation of local functionals. Nonlinear Anal.9 (1985) 515-532.  
  10. A. Braides and A. Defranceschi, Homogenization of multiple integrals. Oxford University Press, Oxford, Oxford Lecture Ser. in Maths. and its Appl. 12 (1998).  
  11. L. Carbone and C. Sbordone, Some properties of Γ-limits of integral functionals. Ann. Mat. Pura Appl. (iv)122 (1979) 1-60.  
  12. V. Chiadò Piat and A. Coscia, Hölder continuity of minimizers of functionals with variable growth exponent. Manuscripta Math.93 (1997) 283-299.  
  13. A. Coscia and G. Mingione, Hölder continuity of the gradient of p(x)-harmonic mappings. C. R. Acad. Sci. Paris328 (1999) 363-368.  
  14. G. Dal Maso, An introduction to Γ-convergence. Birkäuser, Boston, Prog. Nonlinear Differential Equations Appl. 8 (1993).  
  15. G. Dal Maso and L. Modica, A general theory for variational functionals. Quaderno S.N.S. Pisa, Topics in Funct. Anal. (1982).  
  16. E. De Giorgi, Sulla convergenza di alcune successioni di integrali di tipo dell'area. Rend. Mat. Univ. Roma8 (1975) 277-294.  
  17. E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat.58 (1975) 842-850.  
  18. E. De Giorgi and G. Letta, Une notion générale de convergence faible pour des fonctions croissantes d'ensemble. Ann. Scuola Norm. Sup. Pisa Cl. Sci.4 (1977) 61-99.  
  19. I. Ekeland and R. Temam, Convex analysis and variational problems. North Holland, Amsterdam (1978).  
  20. X. Fan and D. Zhao, A class of De Giorgi type and Hölder continuity. Nonlinear Anal. T.M.A.36 (1999) 295-318.  
  21. N. Fusco, On the convergence of integral functionals depending on vector-valued functions. Ricerche Mat.32 (1983) 321-339.  
  22. P. Marcellini, Regularity and existence of solutions of elliptic equations with p,q-growth conditions. J. Differential Equations90 (1991) 1-30.  
  23. P. Marcellini, Regularity for some scalar variational problems under general growth conditions. J. Optim. Theory Appl.90 (1996) 161-181.  
  24. C.B. Morrey, Quasi-convexity and semicontinuity of multiple integrals. Pacific J. Math.2 (1952) 25-53.  
  25. K.R. Rajagopal and M. R u z i c ka , Mathematical modelling of electrorheological fluids. Cont. Mech. Therm.13 (2001) 59-78.  
  26. M. R u z i c ka , Electrorheological fluids: Modeling and mathematical theory. Springer, Berlin, Lecture Notes in Math. 1748 (2000).  
  27. V.V. Zhikov, On the passage to the limit in nonlinear variational problems. Russian Acad. Sci. Sb. Math.76 (1993) 427-459.  
  28. V.V. Zhikov, On Lavrentiev's phenomenon. Russian J. Math. Phys.3 (1995) 249-269.  
  29. V.V. Zhikov, On some variational problems. Russian J. Math. Phys.5 (1997) 105-116.  
  30. V.V. Zhikov, Meyers type estimates for solving the non linear Stokes system. Differential Equations33 (1997) 107-114.  
  31. V.V. Zhikov, S.M. Kozlov and O.A. Oleinik, Homogenization of differential operators and integral functionals. Springer, Berlin (1994).  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.