# Feedback in state constrained optimal control

Francis H. Clarke; Ludovic Rifford; R. J. Stern

ESAIM: Control, Optimisation and Calculus of Variations (2010)

- Volume: 7, page 97-133
- ISSN: 1292-8119

## Access Full Article

top## Abstract

top## How to cite

topClarke, Francis H., Rifford, Ludovic, and Stern, R. J.. "Feedback in state constrained optimal control." ESAIM: Control, Optimisation and Calculus of Variations 7 (2010): 97-133. <http://eudml.org/doc/90638>.

@article{Clarke2010,

abstract = {
An optimal control problem is studied, in which the state is required
to remain in a
compact set S. A control feedback law is constructed which, for
given ε > 0, produces ε-optimal trajectories that satisfy the
state constraint universally with respect to all initial conditions
in S.
The construction relies upon a constraint removal technique which
utilizes geometric properties of inner approximations of S and a
related trajectory tracking result.
The control feedback is shown to possess a robustness property with
respect to state measurement error.
},

author = {Clarke, Francis H., Rifford, Ludovic, Stern, R. J.},

journal = {ESAIM: Control, Optimisation and Calculus of Variations},

keywords = {Optimal control; state constraint;
near-optimal control feedback; nonsmooth analysis.; optimal control; near-optimal control feedback; nonsmooth analysis},

language = {eng},

month = {3},

pages = {97-133},

publisher = {EDP Sciences},

title = {Feedback in state constrained optimal control},

url = {http://eudml.org/doc/90638},

volume = {7},

year = {2010},

}

TY - JOUR

AU - Clarke, Francis H.

AU - Rifford, Ludovic

AU - Stern, R. J.

TI - Feedback in state constrained optimal control

JO - ESAIM: Control, Optimisation and Calculus of Variations

DA - 2010/3//

PB - EDP Sciences

VL - 7

SP - 97

EP - 133

AB -
An optimal control problem is studied, in which the state is required
to remain in a
compact set S. A control feedback law is constructed which, for
given ε > 0, produces ε-optimal trajectories that satisfy the
state constraint universally with respect to all initial conditions
in S.
The construction relies upon a constraint removal technique which
utilizes geometric properties of inner approximations of S and a
related trajectory tracking result.
The control feedback is shown to possess a robustness property with
respect to state measurement error.

LA - eng

KW - Optimal control; state constraint;
near-optimal control feedback; nonsmooth analysis.; optimal control; near-optimal control feedback; nonsmooth analysis

UR - http://eudml.org/doc/90638

ER -

## References

top- F. Ancona and A. Bressan, Patchy vector fields and asymptotic stabilization. ESAIM: COCV4 (1999) 445-471.
- N.N. Barabanova and A.I. Subbotin, On continuous evasion strategies in game theoretic problems on the encounter of motions. Prikl. Mat. Mekh.34 (1970) 796-803.
- N.N. Barabanova and A.I. Subbotin, On classes of strategies in differential games of evasion. Prikl. Mat. Mekh.35 (1971) 385-392.
- M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhäuser, Boston (1997).
- L.D. Berkovitz, Optimal feedback controls. SIAM J. Control Optim.27 (1989) 991-1006.
- P. Cannarsa and H. Frankowska, Some characterizations of optimal trajectories in control theory. SIAM J. Control Optim.29 (1991) 1322-1347.
- I. Capuzzo-Dolcetta and P.L. Lions, Hamilton-Jacobi equations with state constraints. Trans. Amer. Math. Soc.318 (1990) 643-683.
- F.H. Clarke, Optimization and Nonsmooth Analysis. Wiley-Interscience, New York (1983). Republished as Vol. 5 of Classics in Appl. Math. SIAM, Philadelphia (1990).
- F.H. Clarke, Methods of Dynamic and Nonsmooth Optimization, Vol. 57 of CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia (1989).
- F.H. Clarke, Yu.S. Ledyaev, L. Rifford and R.J. Stern, Feedback stabilization and Lyapunov functions. SIAM J. Control Optim.39 (2000) 25-48.
- F.H. Clarke, Yu.S. Ledyaev, E.D. Sontag and A.I. Subbotin, Asymptotic controllability implies control feedback stabilization. IEEE Trans. Automat. Control42 (1997) 1394.
- F.H. Clarke, Yu.S. Ledyaev and R.J. Stern, Proximal analysis and control feedback construction. Proc. Steklov Inst. Math.226 (2000) 1-20.
- F.H. Clarke, Yu.S. Ledyaev, R.J. Stern and P.R. Wolenski, Qualitative properties of trajectories of control systems: A survey. J. Dynam. Control Systems1 (1995) 1-48.
- F.H. Clarke, Yu.S. Ledyaev and A.I. Subbotin, Universal feedback strategies for differential games of pursuit. SIAM J. Control Optim.35 (1997) 552-561.
- F.H. Clarke, Yu.S. Ledyaev and A.I. Subbotin, Universal positional control. Proc. Steklov Inst. Math.224 (1999) 165-186. Preliminary version: Preprint CRM-2386. Univ. de Montréal (1994).
- F.H. Clarke, Yu.S. Ledyaev and R.J. Stern, Complements, approximations, smoothings and invariance properties. J. Convex Anal.4 (1997) 189-219.
- F.H. Clarke, Yu.S. Ledyaev, R.J. Stern and P.R. Wolenski, Nonsmooth Analysis and Control Theory. Springer-Verlag, New York, Grad. Texts in Math. 178 (1998).
- F.H. Clarke, R.J. Stern and P.R. Wolenski, Proximal smoothness and the lower-C2 property. J. Convex Anal.2 (1995) 117-145.
- F. Forcellini and F. Rampazzo, On nonconvex differential inclusions whose state is constrained in the closure of an open set. Applications to dynamic programming. Differential and Integral Equations12 (1999) 471-497.
- H. Frankowska and F. Rampazzo, Filippov's and Filippov-Wazewski's theorems on closed domains. J. Differential Equations161 (2000) 449-478.
- G.G. Garnysheva and A.I. Subbotin, Suboptimal universal strategies in a game-theoretic time-optimality problem. Prikl. Mat. Mekh.59 (1995) 707-713.
- J.-B. Hiriart-Urruty, New concepts in nondifferentiable programming. Bull. Soc. Math. France60 (1979) 57-85.
- H. Ishii and S. Koike, On ε-optimal controls for state constraint problems. Ann. Inst. H. Poincaré Anal. Linéaire17 (2000) 473-502.
- N.N. Krasovskii, Differential games. Approximate and formal models. Mat. Sb. (N.S.)107 (1978) 541-571.
- N.N. Krasovskii, Extremal aiming and extremal displacement in a game-theoretical control. Problems Control Inform. Theory13 (1984) 287-302.
- N.N. Krasovskii, Control of dynamical systems. Nauka, Moscow (1985).
- N.N. Krasovskii and A.I. Subbotin, Positional Differential Games. Nauka, Moscow (1974). French translation: Jeux Différentielles. Mir, Moscou (1979).
- N.N. Krasovskii and A.I. Subbotin, Game-Theoretical Control Problems. Springer-Verlag, New York (1988).
- P. Loewen, Optimal Control via Nonsmooth Analysis. CRM Proc. Lecture Notes Amer. Math. Soc. 2 (1993).
- S. Nobakhtian and R.J. Stern, Universal near-optimal control feedbacks. J. Optim. Theory Appl.107 (2000) 89-123.
- L. Rifford, Problèmes de Stabilisation en Théorie du Contrôle, Doctoral Thesis. Univ. Claude Bernard Lyon 1 (2000).
- L. Rifford, Stabilisation des systèmes globalement asymptotiquement commandables. C. R. Acad. Sci. Paris330 (2000) 211-216.
- L. Rifford, Existence of Lipschitz and semiconcave control-Lyapunov functions. SIAM J. Control Optim. (to appear).
- R.T. Rockafellar, Clarke's tangent cones and boundaries of closed sets in ${\mathbb{R}}^{n}$. Nonlinear Anal.3 (1979) 145-154.
- R.T. Rockafellar, Favorable classes of Lipschitz continuous functions in subgradient optimization, in Nondifferentiable Optimization, edited by E. Nurminski. Permagon Press, New York (1982).
- J.D.L. Rowland and R.B. Vinter, Construction of optimal control feedback controls. Systems Control Lett.16 (1991) 357-357.
- M. Soner, Optimal control problems with state-space constraints I. SIAM J. Control Optim.24 (1986) 551-561.
- E.D. Sontag, Mathematical Control Theory, 2nd Ed.. Springer-Verlag, New York, Texts in Appl. Math. 6 (1998).
- E.D. Sontag, Clock and insensitivity to small measurement errors. ESAIM: COCV4 (1999) 537-557.
- A.I. Subbotin, Generalized Solutions of First Order PDE's. Birkhäuser, Boston (1995).
- N.N. Subbotina, Universal optimal strategies in positional differential games. Differential Equations19 (1983) 1377-1382.
- N.N. Subbotina, The maximum principle and the superdifferential of the value function. Problems Control Inform. Theory18 (1989) 151-160.
- N.N. Subbotina, On structure of optimal feedbacks to control problems, Preprints of the eleventh IFAC International Workshop, Control Applications of Optimization, edited by V. Zakharov (2000).
- R.B. Vinter, Optimal Control. Birkhäuser, Boston (2000).

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.