Static Hedging of Barrier Options with a Smile: An Inverse Problem
Claude Bardos; Raphaël Douady; Andrei Fursikov
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 8, page 127-142
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topBardos, Claude, Douady, Raphaël, and Fursikov, Andrei. "Static Hedging of Barrier Options with a Smile: An Inverse Problem." ESAIM: Control, Optimisation and Calculus of Variations 8 (2010): 127-142. <http://eudml.org/doc/90642>.
@article{Bardos2010,
abstract = {
Let L be a parabolic second order differential operator on the domain $
\bar\{\Pi\}=\left[ 0,T\right] \times \{\mathbb R\}.$ Given a function $\hat\{u\}:
\{\mathbb R\rightarrow R\}$ and $\hat\{x\}>0$ such that the support of û is
contained in $(-\infty ,-\hat\{x\}]$, we let $\hat\{y\}:\bar\{\Pi\}\rightarrow
\{\mathbb R\}$ be the solution to the equation:
\[
L\hat\{y\}=0,\text\{\quad \}\hat\{y\}|\_\{\\{0\\}\times \{\mathbb R\}\}=\hat\{u\} .
\]
Given positive bounds $0<x_\{0\}<x_\{1\},$ we seek a function u with support
in $\left[ x_\{0\},x_\{1\}\right] $ such that the corresponding solution y
satisfies:
\[
y(t,0)=\hat\{y\}(t,0)\quad \quad \forall t\in \left[ 0,T\right] .
\]
We prove in this article that, under some regularity conditions on the
coefficients of L, continuous solutions are unique and dense in the sense
that $\hat\{y\}|_\{[0,T]\times \\{0\\}\}$ can be C0-approximated, but an
exact solution does not exist in general. This result solves the problem of almost replicating a barrier option in the
generalised Black–Scholes framework with a combination of European options,
as stated by Carr et al. in [6].
},
author = {Bardos, Claude, Douady, Raphaël, Fursikov, Andrei},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Inverse problems; Carleman estimates; barrier option hedging; replication.; inverse problems; replication},
language = {eng},
month = {3},
pages = {127-142},
publisher = {EDP Sciences},
title = {Static Hedging of Barrier Options with a Smile: An Inverse Problem},
url = {http://eudml.org/doc/90642},
volume = {8},
year = {2010},
}
TY - JOUR
AU - Bardos, Claude
AU - Douady, Raphaël
AU - Fursikov, Andrei
TI - Static Hedging of Barrier Options with a Smile: An Inverse Problem
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 8
SP - 127
EP - 142
AB -
Let L be a parabolic second order differential operator on the domain $
\bar{\Pi}=\left[ 0,T\right] \times {\mathbb R}.$ Given a function $\hat{u}:
{\mathbb R\rightarrow R}$ and $\hat{x}>0$ such that the support of û is
contained in $(-\infty ,-\hat{x}]$, we let $\hat{y}:\bar{\Pi}\rightarrow
{\mathbb R}$ be the solution to the equation:
\[
L\hat{y}=0,\text{\quad }\hat{y}|_{\{0\}\times {\mathbb R}}=\hat{u} .
\]
Given positive bounds $0<x_{0}<x_{1},$ we seek a function u with support
in $\left[ x_{0},x_{1}\right] $ such that the corresponding solution y
satisfies:
\[
y(t,0)=\hat{y}(t,0)\quad \quad \forall t\in \left[ 0,T\right] .
\]
We prove in this article that, under some regularity conditions on the
coefficients of L, continuous solutions are unique and dense in the sense
that $\hat{y}|_{[0,T]\times \{0\}}$ can be C0-approximated, but an
exact solution does not exist in general. This result solves the problem of almost replicating a barrier option in the
generalised Black–Scholes framework with a combination of European options,
as stated by Carr et al. in [6].
LA - eng
KW - Inverse problems; Carleman estimates; barrier option hedging; replication.; inverse problems; replication
UR - http://eudml.org/doc/90642
ER -
References
top- L. Andersen, J. Andreasen and D. Eliezer, Static Replication of Barrier Options: Some General Results. Preprint Gen. Re Fin. Prod. (2000).
- M. Avellaneda and A. Paras, Managing the Volatility Risk of Portfolio of Derivative Securities: The Lagrangian Uncertain Volatility Model. Appl. Math. Finance3 (1996) 21-52.
- C. Bardos, R. Douady and A. Fursikov, Static Hedging of Barrier Options with a Smile: An Inverse Problem, Preprint CMLA No. 9810. École Normale Supérieure de Cachan (1998).
- F. Black and M. Scholes, The Pricing of Options and Corporate Liabilities. J. Polit. Econ.81 (1973) 637-654.
- P. Carr and A. Chou, Breaking Barriers. RISK (1997) 139-145.
- P. Carr, K. Ellis and V. Gupta, Static Hedging of Exotic Options. J. Finance (1998) 1165-1190.
- M.H. Davis, V.G. Panas and T. Zariphopoulou, European Option Pricing with Transaction Costs. SIAM J. Control Optim.3 (1993) 470-493.
- E. Derman and I. Kani, Riding on a Smile. Risk Mag. (1994) 32-39.
- E. Derman and I. Kani, Stochastic Implied Trees: Arbitrage Pricing with Stochastic Term and Strike Structure of Volatility. Int. J. Theor. Appl. Finance1 (1998) 61-110.
- R. Douady, Closed Form Formulas for Exotic Options and their Lifetime Distribution. Int. J. Theor. Appl. Finance2 (1998) 17-42.
- N. Dubourg, Couverture dynamique en présence d'imperfections, Ph.D. Thesis. Univ. Paris I (1997).
- B. Dupire, Pricing and Hedging with Smiles in Mathematics of Derivative Securities, edited by M.A.H. Dempster and S.R. Pliska. Cambridge Univ. Press, Cambridge (1997) 103-111.
- B. Dupire, A Unified Theory of Volatility, Preprint. Paribas Capital Markets (1995).
- A. Friedman, Partial differential equations of parabolic type. Prentice-hall, Inc. Englewood Cliffs, N.Y. (1964).
- A.V. Fursikov, Lagrange principle for problems of optimal control of ill-posed or singular distributed systems. J. Math. Pures Appl.71 (1992) 139-194.
- A.V. Fursikov and O.Yu. Imanuvilov, On approximate controllability of the Stokes system. Ann. Fac. Sci. Toulouse11 (1993) 205-232.
- A.V. Fursikov and O.Yu. Imanuvilov, Local exact controllability of two dimensional Navier-Stokes system with control on the part of the boundary. Math. Sbornik.187 (1996).
- L. Hörmander, Linear partial differential operators. Springer-Verlag, Berlin (1963).
- N. El Karoui, Évaluation et couverture des options exotiques, Working paper. Univ. Paris VI (1997).
- R. Lattès and J.-L. Lions, Méthode de quasi-réversibilité et applications. Dunod, Paris (1967).
- R.C. Merton, Theory of Rational Option Pricing. Bell J. Econ. Manag. Sci.4 (1973) 141-183.
- J.-L. Lions, Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Dunod Gauthier-Villars, Paris (1968).
- M. Rubinstein, Exotic Options, Finance Working Paper No. 220. U.C. Berkeley (1991).
- P.O. Shorygin, On the Controllability Problem Arising in Financial Mathematics. J. Dynam. Control. Syst.6 (2000) 353-363.
- N. Taleb, Dynamic Hedging: Managing Vanilla and Exotic Options. J. Wiley & Sons, New York (1997).
- D. Tataru, Carleman estimates and unique continuation for solutions to boundary value problems. J. Math. Pures Appl.75 (1996) 367-408.
- M.E. Taylor, Partial Differential Equations II. Springer-Verlag, Berlin (1991). Related papers not cited in the article
- P. Acworth, Pricing and Hedging Barrier and Forward Start Options Using Static Replication, Working paper. ING Barings (1997).
- S. Allen and O. Padovani, Risk Management Using Static Hedging, Working paper. Courant Institute, N.Y.U. (2001).
- L. Andersen and J. Andreasen, Static Barriers. RISK (2000) 120-122.
- S. Aparicio and L. Clewlow, A Comparison of Alternative Methods for Hedging Exotic Options, Working paper. FORC (1997).
- A. Bhandari, Static Hedging: A Genetic Algorithms Approach. Working paper (1999).
- J. Bowie and P. Carr, Static Simplicity. RISK (1994) 44-50.
- H. Brown, D. Hobson and C. Rogers, Robust Hedging of Barrier Options. Math. Finance11 (2000) 285-314.
- P. Carr and J. Picron, Static Hedging of Timing Risk. J. Derivatives (1999) 57-66.
- P. Carr and A. Chou, Static Hedging of Complex Barrier Options, Working paper. Courant Institute, N.Y.U. (1998).
- A. Chou and G. Grigoriev, A Uniform Approach to Static Replication. J. Risk Fall (1998) 73-86.
- M. Davis, W. Schachermayer and R. Tompkins, Pricing, No-arbitrage Bounds and Robust Hedging of Installment Options, Working paper. Tech. Univ. Vienna, Austria (2000).
- E. Derman, D. Ergener and I. Kani, Forever Hedged RISK (1995) 139-145.
- E. Derman, D. Ergener and I. Kani, Static Option Replication. J. Derivatives2 (1995) 78-85.
- N. El Karoui and M. Jeanblanc-Piqué Exotic Options Without Mathematics, Working paper. Univ. Paris VII (1997).
- E. Haug, First...Then...Knock-out Options. Wilmott Mag. (2001).
- E. Haug, Barrier Put-Call Transformations, Working paper. Paloma Partners (1999).
- E. Herzfeld and H. Konishi, Static Replication of Interest Rate Contingent Claims, Master Thesis. M.I.T. (1997).
- D. Hobson, Robust Hedging of the Lookback Option. Finance and Stochastics2 (1998) 329-347.
- P. Jaeckel and R. Rebonato, An Efficien and General Method to Value American-style Equity and FX Options in the Presence of User-defined Smiles and Time-dependent Volatility, Working paper. NatWest (1999).
- G. Koutmos, Financial Risk Management: Dynamic vs. Static Hedging. Global Bus. Econ. Rev.I (1999) 60-75.
- G. Peccati, A Time-space Hedging Theory, Working paper. Univ. Paris VI (2001).
- A. Sbuelz, A General Treatment of Barrier Options and Semi-static Hedges of Double Barrier Options, Working paper. Tilburg Univ. (2000).
- A. Sbuelz, Semi-static Hedging of Double Barrier Options, Working paper. Tilburg Univ. (2000).
- B. Thomas, Exotic Options II in Handbbok of Risk Management, Chap. 4, edited by C. Alexander (1998).
- H. Thomsen, Barrier Options: Evaluation and Hedging, Dissertation. Aarhus Univ. (1998).
- K. Toft and C. Xuan, How Well Can Barrier Options be Hedged by a Static Portfolio of Standard Options? J. Fin. Engrg.7 (1998) 147-175.
- R. Tompkins, Static vs. Dynamic Hedging of Exotic Options: An Evaluation of Hedge Performance via Simulation. Net Exposure2 (1997) 1-36.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.