On the Instantaneous Spreading for the Navier–Stokes System in the Whole Space
Lorenzo Brandolese; Yves Meyer
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 8, page 273-285
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- L. Brandolese, On the Localization of Symmetric and Asymmetric Solutions of the Navier-Stokes Equations dans . C. R. Acad. Sci. Paris Sér. I Math332 (2001) 125-130.
- Y. Dobrokhotov and A.I. Shafarevich, Some integral identities and remarks on the decay at infinity of solutions of the Navier-Stokes Equations. Russian J. Math. Phys.2 (1994) 133-135.
- T. Gallay and C.E. Wayne, Long-time asymptotics of the Navier-Stokes and vorticity equations on . Preprint. Univ. Orsay (2001).
- C. He and Z. Xin, On the decay properties of Solutions to the nonstationary Navier-Stokes Equations in . Proc. Roy. Soc. Edinburgh Sect. A131 (2001) 597-619.
- T. Kato, Strong Lp-Solutions of the Navier-Stokes Equations in , with applications to weak solutions. Math. Z.187 (1984) 471-480.
- O. Ladyzenskaija, The mathematical theory of viscous incompressible flow. Gordon and Breach, New York, English translation, Second Edition (1969).
- T. Miyakawa, On space time decay properties of nonstationary incompressible Navier-Stokes flows in . Funkcial. Ekvac.32 (2000) 541-557.
- S. Takahashi, A wheighted equation approach to decay rate estimates for the Navier-Stokes equations. Nonlinear Anal.37 (1999) 751-789.