Fourier approach to homogenization problems

Carlos Conca; M. Vanninathan

ESAIM: Control, Optimisation and Calculus of Variations (2010)

  • Volume: 8, page 489-511
  • ISSN: 1292-8119

Abstract

top
This article is divided into two chapters. The classical problem of homogenization of elliptic operators with periodically oscillating coefficients is revisited in the first chapter. Following a Fourier approach, we discuss some of the basic issues of the subject: main convergence theorem, Bloch approximation, estimates on second order derivatives, correctors for the medium, and so on. The second chapter is devoted to the discussion of some non-classical behaviour of vibration problems of periodic structures.

How to cite

top

Conca, Carlos, and Vanninathan, M.. "Fourier approach to homogenization problems." ESAIM: Control, Optimisation and Calculus of Variations 8 (2010): 489-511. <http://eudml.org/doc/90658>.

@article{Conca2010,
abstract = { This article is divided into two chapters. The classical problem of homogenization of elliptic operators with periodically oscillating coefficients is revisited in the first chapter. Following a Fourier approach, we discuss some of the basic issues of the subject: main convergence theorem, Bloch approximation, estimates on second order derivatives, correctors for the medium, and so on. The second chapter is devoted to the discussion of some non-classical behaviour of vibration problems of periodic structures. },
author = {Conca, Carlos, Vanninathan, M.},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Homogenization; Bloch waves; correctors; regularity; spectral problems; vibration problems.; regularity; vibration problems; elliptic operators},
language = {eng},
month = {3},
pages = {489-511},
publisher = {EDP Sciences},
title = {Fourier approach to homogenization problems},
url = {http://eudml.org/doc/90658},
volume = {8},
year = {2010},
}

TY - JOUR
AU - Conca, Carlos
AU - Vanninathan, M.
TI - Fourier approach to homogenization problems
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 8
SP - 489
EP - 511
AB - This article is divided into two chapters. The classical problem of homogenization of elliptic operators with periodically oscillating coefficients is revisited in the first chapter. Following a Fourier approach, we discuss some of the basic issues of the subject: main convergence theorem, Bloch approximation, estimates on second order derivatives, correctors for the medium, and so on. The second chapter is devoted to the discussion of some non-classical behaviour of vibration problems of periodic structures.
LA - eng
KW - Homogenization; Bloch waves; correctors; regularity; spectral problems; vibration problems.; regularity; vibration problems; elliptic operators
UR - http://eudml.org/doc/90658
ER -

References

top
  1. F. Aguirre and C. Conca, Eigenfrequencies of a tube bundle immersed in a fluid. Appl. Math. Optim.18 (1988) 1-38.  Zbl0663.76003
  2. G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal.23 (1992) 1482-1518.  Zbl0770.35005
  3. G. Allaire and C. Conca, Bloch-wave homogenization and spectral asymptotic analysis. J. Math. Pures Appl.77 (1998) 153-208.  Zbl0901.35005
  4. G. Allaire and C. Conca, Boundary layers in the homogenization of a spectral problem in fluid-solid structures. SIAM J. Math. Anal.29 (1997) 343-379.  Zbl0918.35018
  5. G. Allaire and C. Conca, Bloch wave homogenization for a spectral problem in fluid-solid structures. Arch. Rational Mech. Anal.135 (1996) 197-257.  Zbl0857.73008
  6. G. Allaire and C. Conca, Analyse asymptotique spectrale de l'équation des ondes. Homogénéisation par ondes de Bloch. C. R. Acad. Sci. Paris Sér. I Math.321 (1995) 293-298.  Zbl0844.35075
  7. G. Allaire and C. Conca, Analyse asymptotique spectrale de l'équation des ondes. Complétude du spectre de Bloch. C. R. Acad. Sci. Paris Sér. I Math.321 (1995) 557-562.  Zbl0844.35076
  8. A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis in Periodic Structures. North-Holland, Amsterdam (1978).  Zbl0404.35001
  9. F. Bloch, Über die Quantenmechanik der Electronen in Kristallgittern. Z. Phys.52 (1928) 555-600.  Zbl54.0990.01
  10. L. Boccardo and P. Marcellini, Sulla convergenza delle soluzioni di disequazioni variazionali. Ann. Mat. Pura Appl.4 (1977) 137-159.  Zbl0333.35030
  11. C. Castro and E. Zuazua, Une remarque sur l'analyse asymptotique spectrale en homogénéisation. C. R. Acad. Sci. Paris Sér. I Math.322 (1996) 1043-1048.  
  12. A. Cherkaev and R. Kohn, Topics in the Mathematical Modelling of Composite Materials. Birkhäuser, Boston (1997).  Zbl0870.00018
  13. C. Conca, S. Natesan and M. Vanninathan, Numerical experiments with the Bloch-Floquet approach in homogenization (to appear).  Zbl1121.65119
  14. C. Conca, R. Orive and M. Vanninathan, Bloch Approximation in Homogenization and Applications. SIAM J. Math. Anal. (in press).  Zbl1010.35004
  15. C. Conca, R. Orive and M. Vanninathan, Bloch Approximation in bounded domains. Preprint (2002).  Zbl1077.35017
  16. C. Conca, R. Orive and M. Vanninathan, Application of Bloch decomposition in wave propagation problems (in preparation).  Zbl1077.35017
  17. C. Conca, J. Planchard and M. Vanninathan, Fluids and Periodic Structures. J. Wiley and Sons/Masson, New York/Paris, Collection RAM 38 (1995).  Zbl0910.76002
  18. C. Conca, J. Planchard and M. Vanninathan, Limiting behaviour of a spectral problem in fluid-solid structures. Asymp. Anal.6 (1993) 365-389.  Zbl0806.35133
  19. C. Conca, J. Planchard, B. Thomas and M. Vanninathan, Problèmes Mathématiques en Couplage Fluide-Structure. Applications aux Faisceaux Tubulaires. Eyrolles, Paris (1994).  
  20. C. Conca and M. Vanninathan, Homogenization of periodic structures via Bloch decomposition. SIAM J. Appl. Math.57 (1997) 1639-1659.  Zbl0990.35019
  21. C. Conca and M. Vanninathan, On uniform H2-estimates in periodic homogenization. Proc. Roy. Soc. Edinburgh Sect. A131 (2001) 499-517.  Zbl1005.35014
  22. C. Conca and M. Vanninathan, A spectral problem arising in fluid-solid structures. Comput. Methods Appl. Mech. Engrg.69 (1988) 215-242.  Zbl0669.73071
  23. G. Dal Maso, An Introduction to Γ - Convergence. Birkhäuser, Boston (1993).  Zbl0816.49001
  24. A. Figotin and P. Kuchment, Band-gap structure of spectra of periodic dielectric and accoustic media. I, scalar model. SIAM J. Appl. Math.56 (1996) 68-88.  Zbl0852.35014
  25. G. Floquet, Sur les équations différentielles linéaires à coefficients périodiques. Ann. École Norm. Sér. 212 (1883) 47-89.  
  26. I.M. Gelfand, Expansion in series of eigenfunctions of an equation with periodic coefficients. Dokl. Akad. Nauk SSSR73 (1950) 1117-1120.  
  27. P. Gérard, Mesures semi-classiques et ondes de Bloch, in Séminaire Equations aux Dérivées Partielles, Vol. 16, 1990-1991. École Polytechnique, Palaiseau (1991).  
  28. P. Gérard, Microlocal defect measures. Comm. Partial Differential Equation16 (1991) 1761-1794.  Zbl0770.35001
  29. P. Gérard, P.A. Markowich, N.J. Mauser and F. Poupaud, Homogenization limits and Wigner transforms. Comm. Pure. Appl. Math.50 (1997) 321-377.  Zbl0881.35099
  30. L. Hörmander, Analysis of Linear Partial Differential Operators III. Springer-Verlag, Berlin (1985).  Zbl0601.35001
  31. S. Kesavan, Homogenization of elliptic eigenvalue problems, I and II. Appl. Math. Optim. 5 (1979) 153-167, 197-216.  Zbl0415.35061
  32. P.L. Lions and T. Paul, Sur les mesures de Wigner. Revista Math. Iberoamer.9 (1993) 553-618.  Zbl0801.35117
  33. P.A. Markowich, N.J. Mauser and F. Poupaud, A Wigner function approach to semiclassical limits: electrons in a periodic potential. J. Math. Phys.35 (1994) 1066-1094.  Zbl0805.35106
  34. R. Morgan and I. Babuska, An approach for constructing families of homogenized equations for periodic media I and II. SIAM J. Math. Anal. 2 (1991) 1-15, 16-33.  Zbl0729.35009
  35. F. Murat, (1977-78) H-Convergence, Séminaire d'Analyse Fonctionnelle et Numérique de l'Université d'Alger, mimeographed notes. English translation: Murat and L. Tartar, H-Convergence, in F. Topics in the Mathematical Modelling of Composite Materials, edited by A. Cherkaev and R. Kohn. Birkhäuser Verlag, Boston. Series Progress in Nonlinear Differential Equations and their Applications31 (1977).  
  36. F. Murat, A survey on compensated compactness, in Contributions to Modern Calculus of Variations, edited by L. Cesari, Pitman Res. Notes in Math. Ser. 148 (1987) 145-183.  
  37. G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal.20 (1989) 608-623.  Zbl0688.35007
  38. F. Odeh and J.B. Keller, Partial differential equations with periodic coefficients and Bloch waves in crystals. J. Math. Phys.5 (1964) 1499-1504.  Zbl0129.46004
  39. O.A. Oleinik, A.S. Shamaev and G.A. Yosifian, On the limiting behaviour of a sequence of operators defined in different Hilbert's spaces. Upsekhi Math. Nauk.44 (1989) 157-158.  
  40. J. Planchard, Global behaviour of large elastic tube-bundles immersed in a fluid. Comput. Mech.2 (1987) 105-118.  Zbl0635.73070
  41. J. Planchard, Eigenfrequencies of a tube-bundle placed in a confined fluid. Comput. Methods Appl. Mech. Engrg.30 (1982) 75-93.  Zbl0483.70016
  42. M. Reed and B. Simon, Methods of Modern Mathematical Physics.I. Functional Analysis, II. Fourier Analysis and Self-Adjointness, III. Scattering Theory, IV. Analysis of Operators. Academic Press, New York (1972-78).  
  43. E. Sánchez-Palencia, Non-Homogeneous Media and Vibration Theory. Springer-Verlag, Berlin. Lecture Notes in Phys.127 (1980).  Zbl0432.70002
  44. J. Sánchez-Hubert and E. Sánchez-Palencia, Vibration and Coupling of Continuous Systems. Asymptotic Methods. Springer-Verlag, Berlin (1989).  Zbl0698.70003
  45. F. Santosa and W.W. Symes, A dispersive effective medium for wave propagation in periodic composites. SIAM J. Appl. Math.51 (1991) 984-1005.  Zbl0741.73017
  46. L. Tartar, H-measures, a new approach for studying homogenization, oscillations and concentration effects in partial differential equations. Proc. Roy. Soc. Edinburgh Sect. A115 (1990) 193-230.  Zbl0774.35008
  47. L. Tartar, Problèmes d'Homogénéisation dans les Equations aux Dérivées Partielles, Cours Peccot au Collège de France (1977). Partially written in F. Murat [].  
  48. M. Vanninathan, Homogenization and eigenvalue problems in perforated domains. Proc. Indian Acad. Sci. Math. Sci.90 (1981) 239-271.  Zbl0486.35063
  49. C. Wilcox, Theory of Bloch waves. J. Anal. Math.33 (1978) 146-167.  Zbl0408.35067

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.