Fourier approach to homogenization problems
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 8, page 489-511
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topConca, Carlos, and Vanninathan, M.. "Fourier approach to homogenization problems." ESAIM: Control, Optimisation and Calculus of Variations 8 (2010): 489-511. <http://eudml.org/doc/90658>.
@article{Conca2010,
abstract = { This article is divided into two chapters. The
classical problem of homogenization of elliptic operators with
periodically oscillating coefficients is revisited in the
first chapter. Following a Fourier approach, we discuss some
of the basic issues of the subject: main convergence theorem,
Bloch approximation, estimates on second order derivatives,
correctors for the medium, and so on. The second chapter is
devoted to the discussion of some non-classical behaviour of
vibration problems of periodic structures.
},
author = {Conca, Carlos, Vanninathan, M.},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Homogenization; Bloch waves; correctors;
regularity; spectral problems; vibration problems.; regularity; vibration problems; elliptic operators},
language = {eng},
month = {3},
pages = {489-511},
publisher = {EDP Sciences},
title = {Fourier approach to homogenization problems},
url = {http://eudml.org/doc/90658},
volume = {8},
year = {2010},
}
TY - JOUR
AU - Conca, Carlos
AU - Vanninathan, M.
TI - Fourier approach to homogenization problems
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 8
SP - 489
EP - 511
AB - This article is divided into two chapters. The
classical problem of homogenization of elliptic operators with
periodically oscillating coefficients is revisited in the
first chapter. Following a Fourier approach, we discuss some
of the basic issues of the subject: main convergence theorem,
Bloch approximation, estimates on second order derivatives,
correctors for the medium, and so on. The second chapter is
devoted to the discussion of some non-classical behaviour of
vibration problems of periodic structures.
LA - eng
KW - Homogenization; Bloch waves; correctors;
regularity; spectral problems; vibration problems.; regularity; vibration problems; elliptic operators
UR - http://eudml.org/doc/90658
ER -
References
top- F. Aguirre and C. Conca, Eigenfrequencies of a tube bundle immersed in a fluid. Appl. Math. Optim.18 (1988) 1-38.
- G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal.23 (1992) 1482-1518.
- G. Allaire and C. Conca, Bloch-wave homogenization and spectral asymptotic analysis. J. Math. Pures Appl.77 (1998) 153-208.
- G. Allaire and C. Conca, Boundary layers in the homogenization of a spectral problem in fluid-solid structures. SIAM J. Math. Anal.29 (1997) 343-379.
- G. Allaire and C. Conca, Bloch wave homogenization for a spectral problem in fluid-solid structures. Arch. Rational Mech. Anal.135 (1996) 197-257.
- G. Allaire and C. Conca, Analyse asymptotique spectrale de l'équation des ondes. Homogénéisation par ondes de Bloch. C. R. Acad. Sci. Paris Sér. I Math.321 (1995) 293-298.
- G. Allaire and C. Conca, Analyse asymptotique spectrale de l'équation des ondes. Complétude du spectre de Bloch. C. R. Acad. Sci. Paris Sér. I Math.321 (1995) 557-562.
- A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis in Periodic Structures. North-Holland, Amsterdam (1978).
- F. Bloch, Über die Quantenmechanik der Electronen in Kristallgittern. Z. Phys.52 (1928) 555-600.
- L. Boccardo and P. Marcellini, Sulla convergenza delle soluzioni di disequazioni variazionali. Ann. Mat. Pura Appl.4 (1977) 137-159.
- C. Castro and E. Zuazua, Une remarque sur l'analyse asymptotique spectrale en homogénéisation. C. R. Acad. Sci. Paris Sér. I Math.322 (1996) 1043-1048.
- A. Cherkaev and R. Kohn, Topics in the Mathematical Modelling of Composite Materials. Birkhäuser, Boston (1997).
- C. Conca, S. Natesan and M. Vanninathan, Numerical experiments with the Bloch-Floquet approach in homogenization (to appear).
- C. Conca, R. Orive and M. Vanninathan, Bloch Approximation in Homogenization and Applications. SIAM J. Math. Anal. (in press).
- C. Conca, R. Orive and M. Vanninathan, Bloch Approximation in bounded domains. Preprint (2002).
- C. Conca, R. Orive and M. Vanninathan, Application of Bloch decomposition in wave propagation problems (in preparation).
- C. Conca, J. Planchard and M. Vanninathan, Fluids and Periodic Structures. J. Wiley and Sons/Masson, New York/Paris, Collection RAM 38 (1995).
- C. Conca, J. Planchard and M. Vanninathan, Limiting behaviour of a spectral problem in fluid-solid structures. Asymp. Anal.6 (1993) 365-389.
- C. Conca, J. Planchard, B. Thomas and M. Vanninathan, Problèmes Mathématiques en Couplage Fluide-Structure. Applications aux Faisceaux Tubulaires. Eyrolles, Paris (1994).
- C. Conca and M. Vanninathan, Homogenization of periodic structures via Bloch decomposition. SIAM J. Appl. Math.57 (1997) 1639-1659.
- C. Conca and M. Vanninathan, On uniform H2-estimates in periodic homogenization. Proc. Roy. Soc. Edinburgh Sect. A131 (2001) 499-517.
- C. Conca and M. Vanninathan, A spectral problem arising in fluid-solid structures. Comput. Methods Appl. Mech. Engrg.69 (1988) 215-242.
- G. Dal Maso, An Introduction to Convergence. Birkhäuser, Boston (1993).
- A. Figotin and P. Kuchment, Band-gap structure of spectra of periodic dielectric and accoustic media. I, scalar model. SIAM J. Appl. Math.56 (1996) 68-88.
- G. Floquet, Sur les équations différentielles linéaires à coefficients périodiques. Ann. École Norm. Sér. 212 (1883) 47-89.
- I.M. Gelfand, Expansion in series of eigenfunctions of an equation with periodic coefficients. Dokl. Akad. Nauk SSSR73 (1950) 1117-1120.
- P. Gérard, Mesures semi-classiques et ondes de Bloch, in Séminaire Equations aux Dérivées Partielles, Vol. 16, 1990-1991. École Polytechnique, Palaiseau (1991).
- P. Gérard, Microlocal defect measures. Comm. Partial Differential Equation16 (1991) 1761-1794.
- P. Gérard, P.A. Markowich, N.J. Mauser and F. Poupaud, Homogenization limits and Wigner transforms. Comm. Pure. Appl. Math.50 (1997) 321-377.
- L. Hörmander, Analysis of Linear Partial Differential Operators III. Springer-Verlag, Berlin (1985).
- S. Kesavan, Homogenization of elliptic eigenvalue problems, I and II. Appl. Math. Optim. 5 (1979) 153-167, 197-216.
- P.L. Lions and T. Paul, Sur les mesures de Wigner. Revista Math. Iberoamer.9 (1993) 553-618.
- P.A. Markowich, N.J. Mauser and F. Poupaud, A Wigner function approach to semiclassical limits: electrons in a periodic potential. J. Math. Phys.35 (1994) 1066-1094.
- R. Morgan and I. Babuska, An approach for constructing families of homogenized equations for periodic media I and II. SIAM J. Math. Anal. 2 (1991) 1-15, 16-33.
- F. Murat, (1977-78) H-Convergence, Séminaire d'Analyse Fonctionnelle et Numérique de l'Université d'Alger, mimeographed notes. English translation: Murat and L. Tartar, H-Convergence, in F. Topics in the Mathematical Modelling of Composite Materials, edited by A. Cherkaev and R. Kohn. Birkhäuser Verlag, Boston. Series Progress in Nonlinear Differential Equations and their Applications31 (1977).
- F. Murat, A survey on compensated compactness, in Contributions to Modern Calculus of Variations, edited by L. Cesari, Pitman Res. Notes in Math. Ser. 148 (1987) 145-183.
- G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal.20 (1989) 608-623.
- F. Odeh and J.B. Keller, Partial differential equations with periodic coefficients and Bloch waves in crystals. J. Math. Phys.5 (1964) 1499-1504.
- O.A. Oleinik, A.S. Shamaev and G.A. Yosifian, On the limiting behaviour of a sequence of operators defined in different Hilbert's spaces. Upsekhi Math. Nauk.44 (1989) 157-158.
- J. Planchard, Global behaviour of large elastic tube-bundles immersed in a fluid. Comput. Mech.2 (1987) 105-118.
- J. Planchard, Eigenfrequencies of a tube-bundle placed in a confined fluid. Comput. Methods Appl. Mech. Engrg.30 (1982) 75-93.
- M. Reed and B. Simon, Methods of Modern Mathematical Physics.I. Functional Analysis, II. Fourier Analysis and Self-Adjointness, III. Scattering Theory, IV. Analysis of Operators. Academic Press, New York (1972-78).
- E. Sánchez-Palencia, Non-Homogeneous Media and Vibration Theory. Springer-Verlag, Berlin. Lecture Notes in Phys.127 (1980).
- J. Sánchez-Hubert and E. Sánchez-Palencia, Vibration and Coupling of Continuous Systems. Asymptotic Methods. Springer-Verlag, Berlin (1989).
- F. Santosa and W.W. Symes, A dispersive effective medium for wave propagation in periodic composites. SIAM J. Appl. Math.51 (1991) 984-1005.
- L. Tartar, H-measures, a new approach for studying homogenization, oscillations and concentration effects in partial differential equations. Proc. Roy. Soc. Edinburgh Sect. A115 (1990) 193-230.
- L. Tartar, Problèmes d'Homogénéisation dans les Equations aux Dérivées Partielles, Cours Peccot au Collège de France (1977). Partially written in F. Murat [].
- M. Vanninathan, Homogenization and eigenvalue problems in perforated domains. Proc. Indian Acad. Sci. Math. Sci.90 (1981) 239-271.
- C. Wilcox, Theory of Bloch waves. J. Anal. Math.33 (1978) 146-167.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.