Fourier approach to homogenization problems

Carlos Conca; M. Vanninathan

ESAIM: Control, Optimisation and Calculus of Variations (2010)

  • Volume: 8, page 489-511
  • ISSN: 1292-8119

Abstract

top
This article is divided into two chapters. The classical problem of homogenization of elliptic operators with periodically oscillating coefficients is revisited in the first chapter. Following a Fourier approach, we discuss some of the basic issues of the subject: main convergence theorem, Bloch approximation, estimates on second order derivatives, correctors for the medium, and so on. The second chapter is devoted to the discussion of some non-classical behaviour of vibration problems of periodic structures.

How to cite

top

Conca, Carlos, and Vanninathan, M.. "Fourier approach to homogenization problems." ESAIM: Control, Optimisation and Calculus of Variations 8 (2010): 489-511. <http://eudml.org/doc/90658>.

@article{Conca2010,
abstract = { This article is divided into two chapters. The classical problem of homogenization of elliptic operators with periodically oscillating coefficients is revisited in the first chapter. Following a Fourier approach, we discuss some of the basic issues of the subject: main convergence theorem, Bloch approximation, estimates on second order derivatives, correctors for the medium, and so on. The second chapter is devoted to the discussion of some non-classical behaviour of vibration problems of periodic structures. },
author = {Conca, Carlos, Vanninathan, M.},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Homogenization; Bloch waves; correctors; regularity; spectral problems; vibration problems.; regularity; vibration problems; elliptic operators},
language = {eng},
month = {3},
pages = {489-511},
publisher = {EDP Sciences},
title = {Fourier approach to homogenization problems},
url = {http://eudml.org/doc/90658},
volume = {8},
year = {2010},
}

TY - JOUR
AU - Conca, Carlos
AU - Vanninathan, M.
TI - Fourier approach to homogenization problems
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 8
SP - 489
EP - 511
AB - This article is divided into two chapters. The classical problem of homogenization of elliptic operators with periodically oscillating coefficients is revisited in the first chapter. Following a Fourier approach, we discuss some of the basic issues of the subject: main convergence theorem, Bloch approximation, estimates on second order derivatives, correctors for the medium, and so on. The second chapter is devoted to the discussion of some non-classical behaviour of vibration problems of periodic structures.
LA - eng
KW - Homogenization; Bloch waves; correctors; regularity; spectral problems; vibration problems.; regularity; vibration problems; elliptic operators
UR - http://eudml.org/doc/90658
ER -

References

top
  1. F. Aguirre and C. Conca, Eigenfrequencies of a tube bundle immersed in a fluid. Appl. Math. Optim.18 (1988) 1-38.  
  2. G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal.23 (1992) 1482-1518.  
  3. G. Allaire and C. Conca, Bloch-wave homogenization and spectral asymptotic analysis. J. Math. Pures Appl.77 (1998) 153-208.  
  4. G. Allaire and C. Conca, Boundary layers in the homogenization of a spectral problem in fluid-solid structures. SIAM J. Math. Anal.29 (1997) 343-379.  
  5. G. Allaire and C. Conca, Bloch wave homogenization for a spectral problem in fluid-solid structures. Arch. Rational Mech. Anal.135 (1996) 197-257.  
  6. G. Allaire and C. Conca, Analyse asymptotique spectrale de l'équation des ondes. Homogénéisation par ondes de Bloch. C. R. Acad. Sci. Paris Sér. I Math.321 (1995) 293-298.  
  7. G. Allaire and C. Conca, Analyse asymptotique spectrale de l'équation des ondes. Complétude du spectre de Bloch. C. R. Acad. Sci. Paris Sér. I Math.321 (1995) 557-562.  
  8. A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis in Periodic Structures. North-Holland, Amsterdam (1978).  
  9. F. Bloch, Über die Quantenmechanik der Electronen in Kristallgittern. Z. Phys.52 (1928) 555-600.  
  10. L. Boccardo and P. Marcellini, Sulla convergenza delle soluzioni di disequazioni variazionali. Ann. Mat. Pura Appl.4 (1977) 137-159.  
  11. C. Castro and E. Zuazua, Une remarque sur l'analyse asymptotique spectrale en homogénéisation. C. R. Acad. Sci. Paris Sér. I Math.322 (1996) 1043-1048.  
  12. A. Cherkaev and R. Kohn, Topics in the Mathematical Modelling of Composite Materials. Birkhäuser, Boston (1997).  
  13. C. Conca, S. Natesan and M. Vanninathan, Numerical experiments with the Bloch-Floquet approach in homogenization (to appear).  
  14. C. Conca, R. Orive and M. Vanninathan, Bloch Approximation in Homogenization and Applications. SIAM J. Math. Anal. (in press).  
  15. C. Conca, R. Orive and M. Vanninathan, Bloch Approximation in bounded domains. Preprint (2002).  
  16. C. Conca, R. Orive and M. Vanninathan, Application of Bloch decomposition in wave propagation problems (in preparation).  
  17. C. Conca, J. Planchard and M. Vanninathan, Fluids and Periodic Structures. J. Wiley and Sons/Masson, New York/Paris, Collection RAM 38 (1995).  
  18. C. Conca, J. Planchard and M. Vanninathan, Limiting behaviour of a spectral problem in fluid-solid structures. Asymp. Anal.6 (1993) 365-389.  
  19. C. Conca, J. Planchard, B. Thomas and M. Vanninathan, Problèmes Mathématiques en Couplage Fluide-Structure. Applications aux Faisceaux Tubulaires. Eyrolles, Paris (1994).  
  20. C. Conca and M. Vanninathan, Homogenization of periodic structures via Bloch decomposition. SIAM J. Appl. Math.57 (1997) 1639-1659.  
  21. C. Conca and M. Vanninathan, On uniform H2-estimates in periodic homogenization. Proc. Roy. Soc. Edinburgh Sect. A131 (2001) 499-517.  
  22. C. Conca and M. Vanninathan, A spectral problem arising in fluid-solid structures. Comput. Methods Appl. Mech. Engrg.69 (1988) 215-242.  
  23. G. Dal Maso, An Introduction to Γ - Convergence. Birkhäuser, Boston (1993).  
  24. A. Figotin and P. Kuchment, Band-gap structure of spectra of periodic dielectric and accoustic media. I, scalar model. SIAM J. Appl. Math.56 (1996) 68-88.  
  25. G. Floquet, Sur les équations différentielles linéaires à coefficients périodiques. Ann. École Norm. Sér. 212 (1883) 47-89.  
  26. I.M. Gelfand, Expansion in series of eigenfunctions of an equation with periodic coefficients. Dokl. Akad. Nauk SSSR73 (1950) 1117-1120.  
  27. P. Gérard, Mesures semi-classiques et ondes de Bloch, in Séminaire Equations aux Dérivées Partielles, Vol. 16, 1990-1991. École Polytechnique, Palaiseau (1991).  
  28. P. Gérard, Microlocal defect measures. Comm. Partial Differential Equation16 (1991) 1761-1794.  
  29. P. Gérard, P.A. Markowich, N.J. Mauser and F. Poupaud, Homogenization limits and Wigner transforms. Comm. Pure. Appl. Math.50 (1997) 321-377.  
  30. L. Hörmander, Analysis of Linear Partial Differential Operators III. Springer-Verlag, Berlin (1985).  
  31. S. Kesavan, Homogenization of elliptic eigenvalue problems, I and II. Appl. Math. Optim. 5 (1979) 153-167, 197-216.  
  32. P.L. Lions and T. Paul, Sur les mesures de Wigner. Revista Math. Iberoamer.9 (1993) 553-618.  
  33. P.A. Markowich, N.J. Mauser and F. Poupaud, A Wigner function approach to semiclassical limits: electrons in a periodic potential. J. Math. Phys.35 (1994) 1066-1094.  
  34. R. Morgan and I. Babuska, An approach for constructing families of homogenized equations for periodic media I and II. SIAM J. Math. Anal. 2 (1991) 1-15, 16-33.  
  35. F. Murat, (1977-78) H-Convergence, Séminaire d'Analyse Fonctionnelle et Numérique de l'Université d'Alger, mimeographed notes. English translation: Murat and L. Tartar, H-Convergence, in F. Topics in the Mathematical Modelling of Composite Materials, edited by A. Cherkaev and R. Kohn. Birkhäuser Verlag, Boston. Series Progress in Nonlinear Differential Equations and their Applications31 (1977).  
  36. F. Murat, A survey on compensated compactness, in Contributions to Modern Calculus of Variations, edited by L. Cesari, Pitman Res. Notes in Math. Ser. 148 (1987) 145-183.  
  37. G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal.20 (1989) 608-623.  
  38. F. Odeh and J.B. Keller, Partial differential equations with periodic coefficients and Bloch waves in crystals. J. Math. Phys.5 (1964) 1499-1504.  
  39. O.A. Oleinik, A.S. Shamaev and G.A. Yosifian, On the limiting behaviour of a sequence of operators defined in different Hilbert's spaces. Upsekhi Math. Nauk.44 (1989) 157-158.  
  40. J. Planchard, Global behaviour of large elastic tube-bundles immersed in a fluid. Comput. Mech.2 (1987) 105-118.  
  41. J. Planchard, Eigenfrequencies of a tube-bundle placed in a confined fluid. Comput. Methods Appl. Mech. Engrg.30 (1982) 75-93.  
  42. M. Reed and B. Simon, Methods of Modern Mathematical Physics.I. Functional Analysis, II. Fourier Analysis and Self-Adjointness, III. Scattering Theory, IV. Analysis of Operators. Academic Press, New York (1972-78).  
  43. E. Sánchez-Palencia, Non-Homogeneous Media and Vibration Theory. Springer-Verlag, Berlin. Lecture Notes in Phys.127 (1980).  
  44. J. Sánchez-Hubert and E. Sánchez-Palencia, Vibration and Coupling of Continuous Systems. Asymptotic Methods. Springer-Verlag, Berlin (1989).  
  45. F. Santosa and W.W. Symes, A dispersive effective medium for wave propagation in periodic composites. SIAM J. Appl. Math.51 (1991) 984-1005.  
  46. L. Tartar, H-measures, a new approach for studying homogenization, oscillations and concentration effects in partial differential equations. Proc. Roy. Soc. Edinburgh Sect. A115 (1990) 193-230.  
  47. L. Tartar, Problèmes d'Homogénéisation dans les Equations aux Dérivées Partielles, Cours Peccot au Collège de France (1977). Partially written in F. Murat [].  
  48. M. Vanninathan, Homogenization and eigenvalue problems in perforated domains. Proc. Indian Acad. Sci. Math. Sci.90 (1981) 239-271.  
  49. C. Wilcox, Theory of Bloch waves. J. Anal. Math.33 (1978) 146-167.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.