Regularity in kinetic formulations via averaging lemmas
Pierre-Emmanuel Jabin; Benoît Perthame
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 8, page 761-774
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topJabin, Pierre-Emmanuel, and Perthame, Benoît. "Regularity in kinetic formulations via averaging lemmas." ESAIM: Control, Optimisation and Calculus of Variations 8 (2010): 761-774. <http://eudml.org/doc/90670>.
@article{Jabin2010,
abstract = {
We present a new class of averaging lemmas directly motivated by the question of regularity for different nonlinear equations or variational problems which admit a kinetic formulation. In particular they improve the known regularity for systems like γ = 3 in isentropic gas dynamics or in some variational problems arising in thin micromagnetic films. They also allow to obtain directly the best known regularizing effect in multidimensional scalar conservation laws. The new ingredient here is to use velocity regularity for the solution to the transport equation under consideration. The method of proof is based on a decomposition of the density in Fourier space, combined with the K-method of real interpolation.
},
author = {Jabin, Pierre-Emmanuel, Perthame, Benoît},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Regularizing effects; kinetic formulation; averaging lemmas; hyperbolic equations; line-energy
Ginzburg–Landau.; isentropic gas dynamics; transport equation},
language = {eng},
month = {3},
pages = {761-774},
publisher = {EDP Sciences},
title = {Regularity in kinetic formulations via averaging lemmas},
url = {http://eudml.org/doc/90670},
volume = {8},
year = {2010},
}
TY - JOUR
AU - Jabin, Pierre-Emmanuel
AU - Perthame, Benoît
TI - Regularity in kinetic formulations via averaging lemmas
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 8
SP - 761
EP - 774
AB -
We present a new class of averaging lemmas directly motivated by the question of regularity for different nonlinear equations or variational problems which admit a kinetic formulation. In particular they improve the known regularity for systems like γ = 3 in isentropic gas dynamics or in some variational problems arising in thin micromagnetic films. They also allow to obtain directly the best known regularizing effect in multidimensional scalar conservation laws. The new ingredient here is to use velocity regularity for the solution to the transport equation under consideration. The method of proof is based on a decomposition of the density in Fourier space, combined with the K-method of real interpolation.
LA - eng
KW - Regularizing effects; kinetic formulation; averaging lemmas; hyperbolic equations; line-energy
Ginzburg–Landau.; isentropic gas dynamics; transport equation
UR - http://eudml.org/doc/90670
ER -
References
top- L. Ambrosio, C. De Lellis and C. Mantegazza, Line energies for gradient vector fields in the plane. Calc. Var. Partial Differential Equations9 (1999) 327-355.
- J. Bergh and J. Löfström, Interpolation spaces, an introduction. Springer-Verlag, A Ser. of Comprehensive Stud. in Math.223 (1976).
- Y. Brenier and L. Corrias, A kinetic formulation formulti-branch entropy solutions of scalar conservation laws. Ann. Inst. H. Poincaré Anal. Non Linéaire15 (1998) 169-190.
- M. Bézard, Régularité Lp précisée des moyennes dans les équations de transport. Bull. Soc. Math. France122 (1994) 29-76.
- F. Bouchut and L. Desvillettes, Averaging lemmas without time Fourier transform and applications to discretized kineticequations. Proc. Roy. Soc. EdinburghSer. A129 (1999) 19-36.
- F. Bouchut, F. Golse and M. Pulvirenti, Kinetic equations and asymptotic theory. Gauthiers-Villars, Ser. in Appl. Math. (2000).
- A. Desimone, R.W. Kohn, S. Müller and F. Otto, Magnetic microstructures, a paradigm of multiscale problems. Proc. of ICIAM (to appear).
- R. DeVore and G.P. Petrova, The averaging lemma. J. Amer. Math. Soc.14 (2001) 279-296.
- R. DiPerna and P.L. Lions, Global weak solutions of Vlasov-Maxwell systems. Comm. Pure Appl. Math.42 (1989) 729-757.
- R. DiPerna, P.L. Lions and Y. Meyer, Lp regularity of velocity averages. Ann. Inst. H. Poincaré Anal. Non Linéaire8 (1991) 271-287.
- P. Gérard, Microlocal defect measures. Comm. Partial Differential Equations16 (1991) 1761-1794.
- F. Golse, Quelques résultats de moyennisation pour les équations aux dérivées partielles. Rend. Sem. Mat. Univ. Pol. Torino, Fascicolo Speciale 1988 Hyperbolic equations (1987) 101-123.
- F. Golse, P.L. Lions, B. Perthame and R. Sentis, Regularity of the moments of the solution of a transport equation. J. Funct. Anal.26 (1988) 110-125.
- F. Golse, B. Perthame and R. Sentis, Un résultat de compacité pour les équations de transport et application au calcul de la limite de la valeur propre principale d'un opérateur de transport. C. R. Acad. Sci. Paris Sér. I Math.301 (1985) 341-344.
- S. Hwang and A. Tzavaras, Kinetic decomposition of approximate solutions to conservation laws: Applications to relaxation and diffusion-dispersion approximations, Preprint. University of Wisconsin, Madison (2001).
- P.-E. Jabin and B. Perthame, Compactness in Ginzburg-Landau energy by kinetic averaging. Comm. Pure Appl. Math.54 (2001) 1096-1109.
- P.-E. Jabin, F. Otto and B. Perthame, Line-energy Ginzburg-Landau models: Zero-energy states. Ann. Sc. Norm. Sup. Pisa (to appear).
- J.-L. Lions and J. Peetre, Sur une classe d'espaces d'interpolation. Inst. Hautes Études Sci. Publ. Math.19 (1964) 5-68.
- P.L. Lions, Régularité optimale des moyennes en vitesse. C. R. Acad. Sci. Sér. I Math.320 (1995) 911-915.
- P.L. Lions, B. Perthame and E. Tadmor, A kinetic formulation of multidimensional scalar conservation laws and related questions. J. Amer. Math. Soc.7 (1994) 169-191.
- P.L. Lions, B. Perthame and E. Tadmor, Kinetic formulation of the isentropic gas dynamics and p-systems. Comm. Math. Phys.163 (1994) 415-431.
- O.A. Olenik, On Cauchy's problem for nonlinear equations in a class of discontinuous functions. Doklady Akad. Nauk SSSR (N.S.)95 (1954) 451-454.
- B. Perthame, Kinetic Formulations of conservation laws. Oxford University Press, Oxford Ser. in Math. and Its Appl. (2002).
- B. Perthame and P.E. Souganidis, A limiting case for velocity averaging. Ann. Sci. École Norm. Sup. (4)31 (1998) 591-598.
- M. Porthileiro, Compactness of velocity averages. Preprint.
- T. Rivière and S. Serfaty, Compactness, kinetic formulation, and entropies for a problem related to micromagnetics. Preprint (2001).
- A. Vasseur, Time regularity for the system of isentropic gas dynamics with γ = 3. Comm. Partial Differential Equations24 (1999) 1987-1997.
- M. Westdickenberg, some new velocity averaging results. SIAM J. Math. Anal. (to appear).
- C. Cheverry, Regularizing effects for multidimensional scalar conservation laws. Ann. Inst. H. Poincaré Anal. Non Linéaire17 (2000) 413-472.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.