Regularizing effects for multidimensional scalar conservation laws

C. Cheverry

Annales de l'I.H.P. Analyse non linéaire (2000)

  • Volume: 17, Issue: 4, page 413-472
  • ISSN: 0294-1449

How to cite

top

Cheverry, C.. "Regularizing effects for multidimensional scalar conservation laws." Annales de l'I.H.P. Analyse non linéaire 17.4 (2000): 413-472. <http://eudml.org/doc/78497>.

@article{Cheverry2000,
author = {Cheverry, C.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {BV- and Sobolev estimates for some averaged quantities; kinetic formulation; entropy solutions; scattering; Radon transform; two-microlocal regularity; decay estimates for spatially periodic solutions},
language = {eng},
number = {4},
pages = {413-472},
publisher = {Gauthier-Villars},
title = {Regularizing effects for multidimensional scalar conservation laws},
url = {http://eudml.org/doc/78497},
volume = {17},
year = {2000},
}

TY - JOUR
AU - Cheverry, C.
TI - Regularizing effects for multidimensional scalar conservation laws
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2000
PB - Gauthier-Villars
VL - 17
IS - 4
SP - 413
EP - 472
LA - eng
KW - BV- and Sobolev estimates for some averaged quantities; kinetic formulation; entropy solutions; scattering; Radon transform; two-microlocal regularity; decay estimates for spatially periodic solutions
UR - http://eudml.org/doc/78497
ER -

References

top
  1. [1] Bénilan P., Crandall M.G., Regularizing effects of homogeneous evolution equations, in: Contributions to Analysis and Geometry, John Hopkins Univ. Press, Baltimore MD, 1981, pp. 23-39. Zbl0556.35067MR648452
  2. [2] Bouchut F., Desvillettes L., Averaging lemmas without time Fourier transform and applications to discretized kinetic equations, Proc. Royal Soc. Edinburgh A129 (1999) 19-36. Zbl0933.35159MR1669221
  3. [3] Bouchut F., Introduction to the mathematical theory of kinetic equations, in: Coll. Series in Appl. Math. Session "L'état de la recherche" de la S. M. F., Equations cinétiques, Orléans, Elsevier, Amsterdam, 1998. 
  4. [4] Brenier Y., Averaged multivalued solutions fot scalar conservation laws, SIAM J. Numer. Anal.6 (1984) 1013-1037. Zbl0565.65054MR765504
  5. [5] Cheverry C., Effet régularisant pour une loi de conservation scalaire multidimensionnelle, Séminaire: Equations aux derivees partielles, 1998-99, Exp. No. XXIV, 15 pp., Ecole Polytechnique, Palaiseau. Zbl1069.35509MR1721342
  6. [6] Conway E.D., The formation and decay of shocks for a conservation law in several dimensions, Arch. Rational Mech. Anal.64 (1977) 47-57. Zbl0352.35029MR427850
  7. [7] Dafermos C., Asymptotic behavior of solutions of hyperbolic balance laws, in: Bardos C., Bessis D. (Eds.), Bifurcation Phenomena in Mathematical Physics, Reidel, Dordrecht, 1979, pp. 521-533. Zbl0464.35060MR580309
  8. [8] Dafermos C., Regularity and large time behaviour of solutions of a conservation law without convexity, Proc. Roy. Soc. Edinburgh Sect. A99 (1985) 201-239. Zbl0616.35054MR785530
  9. [9] DiPerna R.J., Lions P.L., Meyer Y., Lp regularity of velocity averages, Ann. Inst. Henri Poincaré8 (1991) 271-287. Zbl0763.35014MR1127927
  10. [10] Engquist B.E.W., Large time behavior and homogenization of solutions of two-dimensional conservation laws, Comm. Pure Apl. Math.46 (1993) 1-26. Zbl0797.35114MR1193341
  11. [11] Gérard P., Moyennisation et régularité deux-microlocale, Ann. Sci. Ecole Norm. Sup.23 (1990) 89-121. Zbl0725.35003MR1042388
  12. [12] Golse F., Lions P.L., Perthame B., Sentis R., Regularity of the moments of the solution of a transport equation, J. Funct. Anal.76 (1988) 110-125. Zbl0652.47031MR923047
  13. [13] Helgason S., The Radon Transform, Progress in Mathematics, Vol. 5, Birkhäuser. Zbl0453.43011MR1723736
  14. [14] Kruzkov S.N., First-order quasilinear equations in several independent variables, Math. USSR-Sb.64 (1977) 47-57. 
  15. [15] Lax P.D., Hyperbolic systems of conservation laws and the mathematical theory of shock waves, in: Regional Conference Series in Applied Mathematics, SIAM, 1973. Zbl0268.35062MR350216
  16. [16] Lax P.D., The formation and decay of shock waves, Amer. Math. Month.3 (1972) 227-241. Zbl0228.35019MR298252
  17. [17] Liu T.P., Pierre M., Source solutions and asymptotic behavior in conservation laws, SIAM J. Math. Anal.19 (1988) 763-773. 
  18. [18] Lions P.L., Perthame B., Tadmor E., A kinetic formulation of multidimensional scalar conservation laws and related equations, Bull. Amer. Math. Soc.7 (1994) 169-189. Zbl0820.35094MR1201239
  19. [19] Lucier B.J., Regularity through approximation for scalar conservation laws, Comm. Pure Appl. Math.10 (1957) 537-566. MR946641
  20. [20] Lyberopoulos N., A Poincaré-Bendixon theorem for scalar balance laws, Proc. Royal Soc. Edinburgh A124 (1994) 589-607. Zbl0806.35111MR1286920
  21. [21] Murat F., Compacité par compensation, Ann. Scuola Norm. Sup. Pisa Cl. Sci.5 (1978) 489-507. Zbl0399.46022MR506997
  22. [22] Oleinik O., Discontinuous solutions of nonlinear differential equations, Usp. Mat. Nauk.26 (1963) 95-172. Zbl0131.31803
  23. [23] F Otto, A regularizing effect of nonlinear transport equations, Quart. Appl. Math.56 ( 1998) 355-375. Zbl0970.35115MR1622511
  24. [24] Perthame B., Tadmor E., A kinetic equation with kinetic entropy functions for scalar conservation laws, Comm. Math. Phys.136 (1991) 501-517. Zbl0729.76070MR1099693
  25. [25] Schaeffer D.G., A regularity theorem for conservation laws, Adv. in Math.11 (1973) 368-386. Zbl0267.35009MR326178
  26. [26] Serre D., Systèmes de lois de conservation I, Diderot éditeur, arts et sciences. MR1459988
  27. [27] Tartar L., Une nouvelle méthode de résolution d'équations aux dérivées partielles non linéaires, in: Lecture Notes in Math., Vol. 665, Springer, Berlin, 1977, pp. 228- 241. Zbl0414.35068MR519433
  28. [28] Vasseur A., Contributions à l'approche cinétique des systèmes de lois de conservation hyperboliques, Thèse de doctorat de l'université Paris6, 1999. 
  29. [29] Volpert A.I., The space BV and quasilinear equations, Mat. Sb.73 (1967). English translation: Math. USSR Sb.2 (1967) 225-267. Zbl0168.07402MR216338
  30. [30] Zumbrun K., Decay rates for nonconvex systems of conservation laws, Comm. Pure Appl. Math.46 (1993) 353-386. Zbl0799.35154MR1202961

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.