Homogenization of the compressible Navier–Stokes equations in a porous medium
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 8, page 885-906
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topMasmoudi, Nader. "Homogenization of the compressible Navier–Stokes equations in a porous medium." ESAIM: Control, Optimisation and Calculus of Variations 8 (2010): 885-906. <http://eudml.org/doc/90676>.
@article{Masmoudi2010,
abstract = {
We study the homogenization of the compressible Navier–Stokes
system in a periodic porous
medium (of period ε) with Dirichlet boundary conditions.
At the limit, we recover different systems
depending on the scaling we take. In particular, we
rigorously derive the so-called “porous medium equation”.
},
author = {Masmoudi, Nader},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Compressible Navier–Stokes; homogenization; porous medium equation.; convergence; Dirichlet boundary conditions; porous medium equation},
language = {eng},
month = {3},
pages = {885-906},
publisher = {EDP Sciences},
title = {Homogenization of the compressible Navier–Stokes equations in a porous medium},
url = {http://eudml.org/doc/90676},
volume = {8},
year = {2010},
}
TY - JOUR
AU - Masmoudi, Nader
TI - Homogenization of the compressible Navier–Stokes equations in a porous medium
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 8
SP - 885
EP - 906
AB -
We study the homogenization of the compressible Navier–Stokes
system in a periodic porous
medium (of period ε) with Dirichlet boundary conditions.
At the limit, we recover different systems
depending on the scaling we take. In particular, we
rigorously derive the so-called “porous medium equation”.
LA - eng
KW - Compressible Navier–Stokes; homogenization; porous medium equation.; convergence; Dirichlet boundary conditions; porous medium equation
UR - http://eudml.org/doc/90676
ER -
References
top- G. Allaire, Homogenization of the Stokes flow in a connected porous medium. Asymptot. Anal.2 (1989) 203-222.
- G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal.23 (1992) 1482-1518.
- G. Allaire, Homogenization of the unsteady Stokes equations in porous media, in Progress in partial differential equations: Calculus of variations, applications, Pont-à-Mousson, 1991. Longman Sci. Tech., Harlow (1992) 109-123.
- A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structures. North-Holland Publishing Co., Amsterdam (1978).
- M.E. Bogovski, Solutions of some problems of vector analysis, associated with the operators and , in Theory of cubature formulas and the application of functional analysis to problems of mathematical physics. Akad. Nauk SSSR Sibirsk. Otdel. Inst. Mat., Novosibirsk (1980) 5-40, 149.
- L. Cattabriga, Su un problema al contorno relativo al sistema di equazioni di Stokes. Rend. Sem. Mat. Univ. Padova31 (1961) 308-340.
- H. Darcy, Les fontaines publiques de la ville de Dijon. Dalmont Paris (1856).
- J.I. Díaz, Two problems in homogenization of porous media, in Proc. of the Second International Seminar on Geometry, Continua and Microstructure, Getafe, 1998, Vol. 14 (1999) 141-155.
- E. Feireisl, On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable. Comment. Math. Univ. Carolin.42 (2001) 83-98.
- G.P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations, Vol. I. Springer-Verlag, New York (1994). Linearized steady problems.
- J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod (1969).
- J.-L. Lions, Some methods in the mathematical analysis of systems and their control. Kexue Chubanshe (Science Press), Beijing (1981).
- P.-L. Lions, Mathematical topics in fluid mechanics, Vol. 1. The Clarendon Press Oxford University Press, New York (1996). Incompressible models, Oxford Science Publications.
- P.-L. Lions, Mathematical topics in fluid mechanics, Vol. 2. The Clarendon Press Oxford University Press, New York (1998). Compressible models, Oxford Science Publications.
- R. Lipton and M. Avellaneda, Darcy's law for slow viscous flow past a stationary array of bubbles. Proc. Roy. Soc. Edinburgh Sect. A114 (1990) 71-79.
- N. Masmoudi (in preparation).
- A. Mikelic, Homogenization of nonstationary Navier-Stokes equations in a domain with a grained boundary. Ann. Mat. Pura Appl. (4)158 (1991) 167-179.
- G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal.20 (1989) 608-623.
- G. Nguetseng, Asymptotic analysis for a stiff variational problem arising in mechanics. SIAM J. Math. Anal.21 (1990) 1394-1414.
- E. Sánchez-Palencia, Nonhomogeneous media and vibration theory. Springer-Verlag, Berlin (1980).
- L. Tartar, Incompressible fluid flow in a porous medium: convergence of the homogenization process, in Nonhomogeneous media and vibration theory, edited by E. Sánchez-Palencia (1980) 368-377.
- R. Temam, Navier-Stokes equations and nonlinear functional analysis. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, Second Edition (1995).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.