Control of Transonic Shock Positions
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 8, page 907-914
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topPironneau, Olivier. "Control of Transonic Shock Positions." ESAIM: Control, Optimisation and Calculus of Variations 8 (2010): 907-914. <http://eudml.org/doc/90677>.
@article{Pironneau2010,
abstract = {
We wish to show how the shock position in a nozzle could be
controlled. Optimal control theory and algorithm is applied to the
transonic equation. The difficulty is that the derivative with
respect to the shock position involves a Dirac mass. The one
dimensional case is solved, the two dimensional one is analyzed .
},
author = {Pironneau, Olivier},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Partial differential equations; control; calculus of
variation; nozzle flow; sensitivity; transonic equation.; transonic equation},
language = {eng},
month = {3},
pages = {907-914},
publisher = {EDP Sciences},
title = {Control of Transonic Shock Positions},
url = {http://eudml.org/doc/90677},
volume = {8},
year = {2010},
}
TY - JOUR
AU - Pironneau, Olivier
TI - Control of Transonic Shock Positions
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 8
SP - 907
EP - 914
AB -
We wish to show how the shock position in a nozzle could be
controlled. Optimal control theory and algorithm is applied to the
transonic equation. The difficulty is that the derivative with
respect to the shock position involves a Dirac mass. The one
dimensional case is solved, the two dimensional one is analyzed .
LA - eng
KW - Partial differential equations; control; calculus of
variation; nozzle flow; sensitivity; transonic equation.; transonic equation
UR - http://eudml.org/doc/90677
ER -
References
top- F. Hecht, H. Kawarada, C. Bernardi, V. Girault and O. Pironneau, A finite element problem issued from fictitious domain techniques. East-West J. Appl. Math. (2002).
- M. Olazabal, E. Godlewski and P.A. Raviart, On the linearization of hyperbolic systems of conservation laws. Application to stability, in Équations aux dérivées partielles et applications. Gauthier-Villars, Éd. Sci. Méd. Elsevier, Paris (1998) 549-570.
- J. Necas, Écoulements de fluide : compacité par entropie. Masson, Paris (1989).
- L. Landau and F. Lifschitz, Fluid mechanics. MIR Editions, Moscow (1956).
- M.A. Giles and N.A. Pierce, Analytic adjoint solutions for the quasi-one-dimensional euler equations. J. Fluid Mech.426 (2001) 327-345.
- B. Mohammadi, Contrôle d'instationnarités en couplage fluide-structure. C. R. Acad. Sci. Sér. IIb Phys. Mécanique, astronomie327 (1999) 115-118.
- N. Di Cesare and O. Pironneau, Shock sensitivity analysis. Comput. Fluid Dynam. J.9 (2000) 1-15.
- R. Glowinski, Numerical methods for nonlinear variational problems. Springer-Verlag, New York (1984).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.