Optimal design of turbines with an attached mass
Boris P. Belinskiy; C. Maeve McCarthy; Terry J. Walters
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 9, page 217-230
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topBelinskiy, Boris P., Maeve McCarthy, C., and Walters, Terry J.. "Optimal design of turbines with an attached mass." ESAIM: Control, Optimisation and Calculus of Variations 9 (2010): 217-230. <http://eudml.org/doc/90693>.
@article{Belinskiy2010,
abstract = {
We minimize, with respect to shape, the moment of inertia of a
turbine having the given
lowest eigenfrequency of the torsional oscillations. The necessary
conditions of optimality in conjunction with certain
physical parameters admit a unique optimal design.
},
author = {Belinskiy, Boris P., Maeve McCarthy, C., Walters, Terry J.},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Optimal design; disk; moment of inertia; Sturm–Liouville problem; least eigenvalue;
rearrangement; Helly's principle; Calculus of Variations.; optimal design; Sturm-Liouville problem; rearrangement; Helly principle},
language = {eng},
month = {3},
pages = {217-230},
publisher = {EDP Sciences},
title = {Optimal design of turbines with an attached mass},
url = {http://eudml.org/doc/90693},
volume = {9},
year = {2010},
}
TY - JOUR
AU - Belinskiy, Boris P.
AU - Maeve McCarthy, C.
AU - Walters, Terry J.
TI - Optimal design of turbines with an attached mass
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 9
SP - 217
EP - 230
AB -
We minimize, with respect to shape, the moment of inertia of a
turbine having the given
lowest eigenfrequency of the torsional oscillations. The necessary
conditions of optimality in conjunction with certain
physical parameters admit a unique optimal design.
LA - eng
KW - Optimal design; disk; moment of inertia; Sturm–Liouville problem; least eigenvalue;
rearrangement; Helly's principle; Calculus of Variations.; optimal design; Sturm-Liouville problem; rearrangement; Helly principle
UR - http://eudml.org/doc/90693
ER -
References
top- L.C. Andrews, Elementary Partial Differential Equations with Boundary Value Problems. Academic Press, Orlando, Florida (1986).
- L. Collatz, Eigenwertaufgaben Mit Technischen Anwendungen. Akademische Verlagsgesellschaft, Geest Portig K.-G., Leipzig (1963) 41-42 (in German).
- S.J. Cox, The Two Phase Drum with the Deepest Base Note. Japan J. Ind. Appl. Math.8 (1991) 345-355.
- S.J. Cox and C.M. McCarthy, The Shape of the Tallest Column. SIAM J. Math. Anal.29 (1998) 1-8.
- C.L. Dym, On some recent approaches to structural optimization. J. Sounds & Vibration32 (1974) 49-70.
- D.B. Hinton, Eigenfunction expansions for a singular eigenvalue problem with eigenparameter in the boundary condition. SIAM J. Math. Anal.12 (1981) 572-584.
- D.B. Hinton, An expansion theorem for an eigenvalue problem with eigenvalue parameter in the boundary condition. Quart. J. Math. Oxford2 (1979) 33-42.
- J.B. Keller and F.I. Niordson, The tallest column. J. Math. Mech.16 (1966) 433-446.
- G. Polya and G. Szego, Isoperimetric Inequalites in Mathematical Physics. Princeton University Press, Princeton, NJ, Ann. Math. Stud. 27 (1951).
- D. Porter and D. Stirling, Integral Equations. Cambridge University Press, Cambridge, UK (1990).
- W. Rudin, Principles of Mathematical Analysis, 3rd Ed. McGraw-Hill, New York (1976).
- J.E. Taylor, Minimum mass bar for axial vibrations at specified natural frequency. AIAA J.5 (1967) 1911-1913.
- J.E. Taylor, The strongest column: The energy approach. J. Appl. Mech.34 (1967) 486-487.
- J.E. Taylor and C.Y. Liu, On the optimal design of columns. AIAA J.6 (1968) 1497-1502.
- M.J. Turner, Design of minimum mass structures with specified natural frequencies. AIAA J.5 (1967) 406-412.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.