Everywhere regularity for vectorial functionals with general growth
Elvira Mascolo; Anna Paola Migliorini
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 9, page 399-418
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- R. Aris, The mathematical theory of diffusion and reaction of permeable catalysts. Clarendon Press, Oxford (1975).
- E. Acerbi and N. Fusco, Regularity for minimizers of non-quadratic functionals: The case 1<p<2. J. Math. Anal. Appl.140 (1989) 115-135.
- E. Acerbi and G. Mingione, Regularity results for a class of functionals with nonstandard growth. Arch. Rational Mech. Anal.156 (2001) 121-140.
- E. Acerbi and G. Mingione, Regularity results for quasiconvex functionals with nonstandard growth. Ann. Scuola Norm. Sup. Pisa30 (2001).
- V. Chiadò Piat and A. Coscia, Hölder continuity of minimizers of functionals with variable growth exponent. Manuscripta Math.93 (1997) 283-299.
- A. Coscia and G. Mingione, Hölder continuity of the gradient of p(x)-harmonic mappings. C. R. Acad. Sci. Paris328 (1999) 363-368.
- A. Dall'Aglio, E. Mascolo and G. Papi, Local boundedness for minima of functionals with non standard growth conditions. Rend. Mat.18 (1998) 305-326.
- A. Dall'Aglio and E. Mascolo, -estimates for a class of nonlinear elliptic systems with non standard growth. Atti Sem. Mat. Fis. Univ. Modena (to appear).
- F. Leonetti, E. Mascolo and F. Siepe, Everywhere regularity for a class of vectorial functionals under subquadratic general growth, Preprint. Dipartimento di Matematica ``U. Dini", University of Florence.
- M. Giaquinta, Multiple integrals in the calculus of variations and non linear elliptic systems. Princeton Univ. Press, Princeton NJ, Ann. Math. Stud.105 (1983).
- M. Giaquinta and G. Modica, Remarks on the regularity of the minimizers of certain degenerate functionals. Manuscripta Math.57 (1986) 55-99.
- E. Giusti, Metodi diretti nel calcolo delle variazioni. UMI, Bologna (1994).
- P. Marcellini, Regularity and existence of solutions of elliptic equations with (p,q)-growth conditions. J. Differential Equations90 (1991) 1-30.
- P. Marcellini, Regularity for elliptic equations with general growth conditions. J. Differential Equations105 (1993) 296-333.
- P. Marcellini, Everywhere regularity for a class of elliptic systems without growth conditions. Ann. Scuola Norm. Sup. Pisa23 (1996) 1-25.
- M. Marcus and V.J. Mizel, Continuity of certain Nemitsky operators on Sobolev spaces and chain rule. J. Anal. Math.28 (1975) 303-334.
- E. Mascolo and G. Papi, Local boundedness of integrals of Calculus of Variations. Ann. Mat. Pura Appl.167 (1994) 323-339.
- A.P. Migliorini, Everywhere regularity for a class of elliptic systems with p, q growth conditions. Rend. Istit. Mat. Univ. Trieste XXXI (1999) 203-234.
- A.P. Migliorini, Everywhere regularity for a class of elliptic systems with general growth conditions, Ph.D. Thesis. University of Florence, Italy (2000).
- J. Mosely, A two dimensional Dirichlet problem with an exponential nonlinearity. SIAM J. Math. Anal.14 5 (1983) 719-735.
- M. Ruzicka, Flow of shear dependent electrorheological fluids. C. R. Acad. Sci. Paris329 (1999) 393-398.
- K.R. Rajagopal and M. Ruzicka, On the modeling of electrorheological materials. Mech. Res. Commun.23 (1996) 401-407.
- K. Uhlenbeck, Regularity for a class of non-linear elliptic systems. Acta Math.138 (1977) 219-240.
- V.V. ZhiKov, On Lavrentiev phenomenon. Russian J.Math. Phys.3 (1995) 249-269.