The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Everywhere regularity for vectorial functionals with general growth”

Partial regularity of minimizers of higher order integrals with (, )-growth

Sabine Schemm (2011)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We consider higher order functionals of the form F [ u ] = Ω f ( D m u ) d x for u : n Ω N , where the integrand f : m ( n , N ) , m 1 is strictly quasiconvex and satisfies a non-standard growth condition. More precisely we assume that f fulfills the (p, q)-growth condition γ | A | p f ( A ) L ( 1 + | A | q ) for all A m ( n , N ) , with

Partial regularity of minimizers of higher order integrals with (, )-growth

Sabine Schemm (2011)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We consider higher order functionals of the form F [ u ] = Ω f ( D m u ) d x for u : n Ω N , where the integrand f : m ( n , N ) , m 1 is strictly quasiconvex and satisfies a non-standard growth condition. More precisely we assume that f fulfills the (p, q)-growth condition γ | A | p f ( A ) L ( 1 + | A | q ) for all A m ( n , N ) , with

On a Volume Constrained Variational Problem in SBV²(Ω): Part I

Ana Cristina Barroso, José Matias (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We consider the problem of minimizing the energy E ( u ) : = Ω | u ( x ) | 2 d x + S u Ω 1 + | [ u ] ( x ) | d H N - 1 ( x ) among all functions ∈ ²(Ω) for which two level sets { u = l i } have prescribed Lebesgue measure α i . Subject to this volume constraint the existence of minimizers for (.) is proved and the asymptotic behaviour of the solutions is investigated.

The regularisation of the -well problem by finite elements and by singular perturbation are scaling equivalent in two dimensions

Andrew Lorent (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

Let K : = S O 2 A 1 S O 2 A 2 S O 2 A N where A 1 , A 2 , , A N are matrices of non-zero determinant. We establish a sharp relation between the following two minimisation problems in two dimensions. Firstly the -well problem with surface energy. Let p 1 , 2 , Ω 2 be a convex polytopal region. Define I ϵ p u = Ω d p D u z , K + ϵ D 2 u z 2 d L 2 z and let denote the subspace of functions in W 2 , 2 Ω that satisfy the affine boundary condition on Ω (in the sense of trace), where F K . We consider the scaling (with respect to ) of m ϵ p : = inf u A F I ϵ p u . Secondly the finite element approximation to the...

On the Lower Semicontinuity of Supremal Functionals

Michele Gori, Francesco Maggi (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

In this paper we study the lower semicontinuity problem for a supremal functional of the form F ( u , Ω ) = ess sup x Ω f ( x , u ( x ) , D u ( x ) ) with respect to the strong convergence in (Ω), furnishing a comparison with the analogous theory developed by Serrin for integrals. A sort of Mazur's lemma for gradients of uniformly converging sequences is proved.