Remarques sur l'observabilité pour l'équation de Laplace
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 9, page 621-635
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topPhung, Kim-Dang. "Remarques sur l'observabilité pour l'équation de Laplace." ESAIM: Control, Optimisation and Calculus of Variations 9 (2010): 621-635. <http://eudml.org/doc/90714>.
@article{Phung2010,
abstract = {
We consider the Laplace equation in a smooth bounded domain. We
prove logarithmic estimates, in the sense of John [5] of solutions on
a part of the boundary or of the domain without known boundary conditions.
These results are established by employing Carleman estimates and techniques
that we borrow from the works of Robbiano [8,11]. Also, we establish
an estimate on the cost of an approximate control for an elliptic model equation.
},
author = {Phung, Kim-Dang},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Laplace equation; observability; Carleman inequalities;
approximate controllability.; approximate controllability},
language = {eng},
month = {3},
pages = {621-635},
publisher = {EDP Sciences},
title = {Remarques sur l'observabilité pour l'équation de Laplace},
url = {http://eudml.org/doc/90714},
volume = {9},
year = {2010},
}
TY - JOUR
AU - Phung, Kim-Dang
TI - Remarques sur l'observabilité pour l'équation de Laplace
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 9
SP - 621
EP - 635
AB -
We consider the Laplace equation in a smooth bounded domain. We
prove logarithmic estimates, in the sense of John [5] of solutions on
a part of the boundary or of the domain without known boundary conditions.
These results are established by employing Carleman estimates and techniques
that we borrow from the works of Robbiano [8,11]. Also, we establish
an estimate on the cost of an approximate control for an elliptic model equation.
LA - eng
KW - Laplace equation; observability; Carleman inequalities;
approximate controllability.; approximate controllability
UR - http://eudml.org/doc/90714
ER -
References
top- R. Dautray et J.-L. Lions, Analyse mathématique et calcul numérique. Masson (1988).
- C. Fabre et G. Lebeau, Prolongement unique des solutions de l'équation de Stokes. Comm. Partial Differential Equations21 (1996) 573-596.
- E. Fernández-Cara et E. Zuazua, The cost of approximate controllability for heat equations: The linear case. Adv. Differential Equations5 (2000) 465-514.
- L. Hörmander, Linear partial differential operators. Springer Verlag, Berlin (1963).
- F. John, Continuous dependence on data for solutions of partial differential equations with a prescribed bound. Comm. Pure Appl. Math.13 (1960) 551-585.
- G. Lebeau, Contrôle analytique. I. Estimations a priori. Duke Math. J.68 (1992) 1-30.
- J.-L. Lions, Contrôlabilité exacte, stabilisation et perturbation des systèmes distribués, Vol. 1, Coll. RMA. Masson, Paris (1988).
- G. Lebeau et L. Robbiano, Contrôle exact de l'équation de la chaleur. Comm. Partial Differential Equations20 (1995) 335-356.
- J.-L. Lions et E. Magenes, Problèmes aux limites non homogènes, Vol. 1. Dunod (1968).
- K.-D. Phung, Stabilisation d'ondes électromagnétiques. Thèse de l'ENS Cachan (1998).
- L. Robbiano, Théorème d'unicité adapté au contrôle des solutions des problèmes hyperboliques. Comm. Partial Differential Equations16 (1991) 789-800.
- L. Robbiano, Fonction de coût et contrôle des solutions des équations hyperboliques. Asymptot. Anal.10 (1995) 95-115.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.