The steepest descent dynamical system with control. Applications to constrained minimization
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 10, Issue: 2, page 243-258
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topCabot, Alexandre. "The steepest descent dynamical system with control. Applications to constrained minimization." ESAIM: Control, Optimisation and Calculus of Variations 10.2 (2010): 243-258. <http://eudml.org/doc/90728>.
@article{Cabot2010,
abstract = {
Let H be a real Hilbert space, $\Phi_1: H\to \xR$ a
convex function of class $\{\mathcal C\}^1$ that we wish to minimize under the convex
constraint S.
A classical approach consists in following the trajectories of the generalized
steepest descent system (cf. Brézis [CITE]) applied
to the non-smooth function $\Phi_1+\delta_S$. Following Antipin [1], it is also possible to use a
continuous gradient-projection system.
We propose here an alternative method as follows:
given a smooth convex function $\Phi_0: H\to \xR$ whose critical points coincide
with S
and a control parameter $\varepsilon:\xR_+\to \xR_+$ tending to zero,
we consider the “Steepest Descent and Control” system
\[(SDC) \qquad \dot\{x\}(t)+\nabla \Phi\_0(x(t))+\varepsilon(t)\, \nabla \Phi\_1(x(t))=0,\]
where
the control ε satisfies $\int_0^\{+\infty\} \varepsilon(t)\, \{\rm d\}t =+\infty$. This last condition ensures that ε “slowly” tends
to 0. When H is finite dimensional, we then prove that
$d(x(t), \{\rm argmin\}\kern 0.12em_S \Phi_1) \to 0 \quad (t\to +\infty),$
and we give sufficient conditions under which $x(t) \to \bar\{x\}\in \,\{\rm argmin\}\kern 0.12em_S \Phi_1$.
We end the paper by numerical experiments allowing to compare
the (SDC) system with the other systems already mentioned.
},
author = {Cabot, Alexandre},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Dissipative dynamical system; steepest descent method; constrained optimization; convex minimization; asymptotic behaviour; non-linear oscillator.; dissipative dynamical system; non-linear oscillator},
language = {eng},
month = {3},
number = {2},
pages = {243-258},
publisher = {EDP Sciences},
title = {The steepest descent dynamical system with control. Applications to constrained minimization},
url = {http://eudml.org/doc/90728},
volume = {10},
year = {2010},
}
TY - JOUR
AU - Cabot, Alexandre
TI - The steepest descent dynamical system with control. Applications to constrained minimization
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 10
IS - 2
SP - 243
EP - 258
AB -
Let H be a real Hilbert space, $\Phi_1: H\to \xR$ a
convex function of class ${\mathcal C}^1$ that we wish to minimize under the convex
constraint S.
A classical approach consists in following the trajectories of the generalized
steepest descent system (cf. Brézis [CITE]) applied
to the non-smooth function $\Phi_1+\delta_S$. Following Antipin [1], it is also possible to use a
continuous gradient-projection system.
We propose here an alternative method as follows:
given a smooth convex function $\Phi_0: H\to \xR$ whose critical points coincide
with S
and a control parameter $\varepsilon:\xR_+\to \xR_+$ tending to zero,
we consider the “Steepest Descent and Control” system
\[(SDC) \qquad \dot{x}(t)+\nabla \Phi_0(x(t))+\varepsilon(t)\, \nabla \Phi_1(x(t))=0,\]
where
the control ε satisfies $\int_0^{+\infty} \varepsilon(t)\, {\rm d}t =+\infty$. This last condition ensures that ε “slowly” tends
to 0. When H is finite dimensional, we then prove that
$d(x(t), {\rm argmin}\kern 0.12em_S \Phi_1) \to 0 \quad (t\to +\infty),$
and we give sufficient conditions under which $x(t) \to \bar{x}\in \,{\rm argmin}\kern 0.12em_S \Phi_1$.
We end the paper by numerical experiments allowing to compare
the (SDC) system with the other systems already mentioned.
LA - eng
KW - Dissipative dynamical system; steepest descent method; constrained optimization; convex minimization; asymptotic behaviour; non-linear oscillator.; dissipative dynamical system; non-linear oscillator
UR - http://eudml.org/doc/90728
ER -
References
top- A.S. Antipin, Minimization of convex functions on convex sets by means of differential equations. Differ. Equ.30 (1994) 1365-1375 (1995).
- V. Arnold, Equations différentielles ordinaires. Éditions de Moscou (1974).
- H. Attouch and R. Cominetti, A dynamical approach to convex minimization coupling approximation with the steepest descent method. J. Differ. Equ.128 (1996) 519-540.
- H. Attouch and M.-O. Czarnecki, Asymptotic control and stabilization of nonlinear oscillators with non isolated equilibria. J. Differ. Equ.179 (2002) 278-310.
- H. Brézis, Opérateurs maximaux monotones dans les espaces de Hilbert et équations d'évolution. Lect. Notes5 (1972).
- R.E. Bruck, Asymptotic convergence of nonlinear contraction semigroups in Hilbert space. J. Funct. Anal.18 (1975) 15-26.
- A. Cabot and M.-O. Czarnecki, Asymptotic control of pairs of oscillators coupled by a repulsion, with non isolated equilibria. SIAM J. Control Optim.41 (2002) 1254-1280.
- A. Haraux, Systèmes dynamiques dissipatifs et applications. RMA 17, Masson, Paris (1991).
- W. Hirsch and S. Smale, Differential equations, dynamical systems and linear algebra. Academic Press, New York (1974).
- J.P. Lasalle and S. Lefschetz, Stability by Lyapounov's Direct Method with Applications. Academic Press, New York (1961).
- Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Amer. Math. Soc.73 (1967) 591-597.
- H. Reinhardt, Equations différentielles. Fondements et applications. Dunod, Paris, 2e edn. (1989).
- A.N. Tikhonov and V.Ya. Arsenine, Méthodes de résolution de problèmes mal posés. MIR (1976).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.