Sharp summability for Monge Transport density via Interpolation
Luigi De Pascale; Aldo Pratelli
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 10, Issue: 4, page 549-552
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topDe Pascale, Luigi, and Pratelli, Aldo. "Sharp summability for Monge Transport density via Interpolation." ESAIM: Control, Optimisation and Calculus of Variations 10.4 (2010): 549-552. <http://eudml.org/doc/90742>.
@article{DePascale2010,
abstract = {
Using some results proved in De Pascale and Pratelli [Calc. Var. Partial Differ. Equ.14 (2002) 249-274] (and De Pascale et al. [Bull. London Math. Soc.36 (2004) 383-395]) and a suitable interpolation technique, we show that the transport density relative to an Lp source is also an Lp function for any $1\leq p\leq +\infty$.
},
author = {De Pascale, Luigi, Pratelli, Aldo},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Transport density; interpolation; summability.; transport density; summability},
language = {eng},
month = {3},
number = {4},
pages = {549-552},
publisher = {EDP Sciences},
title = {Sharp summability for Monge Transport density via Interpolation},
url = {http://eudml.org/doc/90742},
volume = {10},
year = {2010},
}
TY - JOUR
AU - De Pascale, Luigi
AU - Pratelli, Aldo
TI - Sharp summability for Monge Transport density via Interpolation
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 10
IS - 4
SP - 549
EP - 552
AB -
Using some results proved in De Pascale and Pratelli [Calc. Var. Partial Differ. Equ.14 (2002) 249-274] (and De Pascale et al. [Bull. London Math. Soc.36 (2004) 383-395]) and a suitable interpolation technique, we show that the transport density relative to an Lp source is also an Lp function for any $1\leq p\leq +\infty$.
LA - eng
KW - Transport density; interpolation; summability.; transport density; summability
UR - http://eudml.org/doc/90742
ER -
References
top- L. Ambrosio, Mathematical Aspects of Evolving Interfaces. Lect. Notes Math.1812 (2003) 1-52.
- L. Ambrosio and A. Pratelli, Existence and stability results in the L1 theory of optimal transportation. Lect. Notes Math.1813 (2003) 123-160.
- G. Bouchitté and G. Buttazzo, Characterization of optimal shapes and masses through Monge-Kantorovich equation. J. Eur. Math. Soc.3 (2001) 139-168.
- G. Bouchitté, G. Buttazzo and P. Seppecher, Shape Optimization Solutions via Monge-Kantorovich Equation. C. R. Acad. Sci. Paris I324 (1997) 1185-1191.
- L. De Pascale, L.C. Evans and A. Pratelli, Integral Estimates for Transport Densities. Bull. London Math. Soc.36 (2004) 383-395.
- L. De Pascale and A. Pratelli, Regularity properties for Monge transport density and for solutions of some shape optimization problem. Calc. Var. Partial Differ. Equ.14 (2002) 249-274.
- L.C. Evans and W. Gangbo, Differential Equations Methods for the Monge-Kantorovich Mass Transfer Problem. Mem. Amer. Math. Soc.137 (1999).
- M. Feldman and R. McCann, Uniqueness and transport density in Monge's mass transportation problem. Calc. Var. Partial Differ. Equ.15 (2002) 81-113.
- W. Gangbo and R.J. McCann, The geometry of optimal transportation. Acta Math.177 (1996) 113-161.
- M. Giaquinta, Introduction to regularity theory for nonlinear elliptic systems. Birkhäuser Verlag (1993).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.