Sharp summability for Monge Transport density via Interpolation
Luigi De Pascale; Aldo Pratelli
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 10, Issue: 4, page 549-552
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- L. Ambrosio, Mathematical Aspects of Evolving Interfaces. Lect. Notes Math.1812 (2003) 1-52.
- L. Ambrosio and A. Pratelli, Existence and stability results in the L1 theory of optimal transportation. Lect. Notes Math.1813 (2003) 123-160.
- G. Bouchitté and G. Buttazzo, Characterization of optimal shapes and masses through Monge-Kantorovich equation. J. Eur. Math. Soc.3 (2001) 139-168.
- G. Bouchitté, G. Buttazzo and P. Seppecher, Shape Optimization Solutions via Monge-Kantorovich Equation. C. R. Acad. Sci. Paris I324 (1997) 1185-1191.
- L. De Pascale, L.C. Evans and A. Pratelli, Integral Estimates for Transport Densities. Bull. London Math. Soc.36 (2004) 383-395.
- L. De Pascale and A. Pratelli, Regularity properties for Monge transport density and for solutions of some shape optimization problem. Calc. Var. Partial Differ. Equ.14 (2002) 249-274.
- L.C. Evans and W. Gangbo, Differential Equations Methods for the Monge-Kantorovich Mass Transfer Problem. Mem. Amer. Math. Soc.137 (1999).
- M. Feldman and R. McCann, Uniqueness and transport density in Monge's mass transportation problem. Calc. Var. Partial Differ. Equ.15 (2002) 81-113.
- W. Gangbo and R.J. McCann, The geometry of optimal transportation. Acta Math.177 (1996) 113-161.
- M. Giaquinta, Introduction to regularity theory for nonlinear elliptic systems. Birkhäuser Verlag (1993).