Second-order sufficient optimality conditions for the optimal control of Navier-Stokes equations
Fredi Tröltzsch; Daniel Wachsmuth
ESAIM: Control, Optimisation and Calculus of Variations (2005)
- Volume: 12, Issue: 1, page 93-119
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topTröltzsch, Fredi, and Wachsmuth, Daniel. "Second-order sufficient optimality conditions for the optimal control of Navier-Stokes equations." ESAIM: Control, Optimisation and Calculus of Variations 12.1 (2005): 93-119. <http://eudml.org/doc/90792>.
@article{Tröltzsch2005,
abstract = {
In this paper sufficient optimality conditions are established for optimal control of
both steady-state and instationary Navier-Stokes equations. The second-order condition requires
coercivity of the Lagrange function on a suitable subspace together with first-order necessary
conditions. It ensures local optimality of a reference function in a Ls-neighborhood,
whereby the underlying analysis allows to use weaker norms than L∞.
},
author = {Tröltzsch, Fredi, Wachsmuth, Daniel},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Optimal control; Navier-Stokes equations; control constraints; second-order
optimality conditions; first-order necessary conditions.; optimal control; second order optimality criterion},
language = {eng},
month = {12},
number = {1},
pages = {93-119},
publisher = {EDP Sciences},
title = {Second-order sufficient optimality conditions for the optimal control of Navier-Stokes equations},
url = {http://eudml.org/doc/90792},
volume = {12},
year = {2005},
}
TY - JOUR
AU - Tröltzsch, Fredi
AU - Wachsmuth, Daniel
TI - Second-order sufficient optimality conditions for the optimal control of Navier-Stokes equations
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2005/12//
PB - EDP Sciences
VL - 12
IS - 1
SP - 93
EP - 119
AB -
In this paper sufficient optimality conditions are established for optimal control of
both steady-state and instationary Navier-Stokes equations. The second-order condition requires
coercivity of the Lagrange function on a suitable subspace together with first-order necessary
conditions. It ensures local optimality of a reference function in a Ls-neighborhood,
whereby the underlying analysis allows to use weaker norms than L∞.
LA - eng
KW - Optimal control; Navier-Stokes equations; control constraints; second-order
optimality conditions; first-order necessary conditions.; optimal control; second order optimality criterion
UR - http://eudml.org/doc/90792
ER -
References
top- F. Abergel and R. Temam, On some control problems in fluid mechanics. Theoret. Comput. Fluid Dynam.1 (1990) 303–325.
- R.A. Adams, Sobolev spaces. Academic Press, San Diego (1978).
- N. Arada, J.-P. Raymond and F. Tröltzsch, On an augmented Lagrangian SQP method for a class of optimal control problems in Banach spaces. Comput. Optim. Appl.22 (2002) 369–398.
- J.F. Bonnans, Second-order analysis for control constrained optimal control problems of semilinear elliptic equations. Appl. Math. Optim.38 (1998) 303–325.
- J.F. Bonnans and H. Zidani, Optimal control problems with partially polyhedric constraints. SIAM J. Control Optim.37 (1999) 1726–1741.
- H. Brezis, Analyse fonctionelle. Masson, Paris (1983).
- E. Casas, An optimal control problem governed by the evolution Navier-Stokes equations, in Optimal control of viscous flows. Frontiers in applied mathematics, S.S. Sritharan Ed., SIAM, Philadelphia (1993).
- E. Casas and M. Mateos, Second order optimality conditions for semilinear elliptic control problems with finitely many state constraints. SIAM J. Control Optim.40 (2002) 1431–1454.
- E. Casas and M. Mateos, Uniform convergence of the FEM. Applications to state constrained control problems. Comp. Appl. Math.21 (2002) 67–100.
- E. Casas, F. Tröltzsch and A. Unger, Second-order sufficient optimality conditions for a nonlinear elliptic control problem. J. Anal. Appl.15 (1996) 687–707.
- E. Casas, F. Tröltzsch and A. Unger, Second-order sufficient optimality conditions for some state-constrained control problems of semilinear elliptic equations. SIAM J. Control Optim.38 (2000) 1369–1391.
- P. Constantin and C. Foias, Navier-Stokes equations. The University of Chicago Press, Chicago (1988).
- R. Dautray and J.L. Lions, Evolution problems I, Mathematical analysis and numerical methods for science and technology5. Springer, Berlin (1992).
- M. Desai and K. Ito, Optimal controls of Navier-Stokes equations. SIAM J. Control Optim.32 (1994) 1428–1446.
- A.L. Dontchev, W.W. Hager, A.B. Poore and B. Yang, Optimality, stability, and convergence in optimal control. Appl. Math. Optim.31 (1995) 297–326.
- J.C. Dunn, On second-order sufficient conditions for structured nonlinear programs in infinite-dimensional function spaces, in Mathematical programming with data perturbations, A. Fiacco Ed., Marcel Dekker (1998) 83–107.
- H.O. Fattorini and S. Sritharan, Necessary and sufficient for optimal controls in viscous flow problems. Proc. Roy. Soc. Edinburgh124 (1994) 211–251.
- M.D. Gunzburger Ed., Flow control. Springer, New York (1995).
- M.D. Gunzburger and S. Manservisi, The velocity tracking problem for Navier-Stokes flows with bounded distributed controls. SIAM J. Control Optim.37 (1999) 1913–1945.
- M.D. Gunzburger and S. Manservisi, Analysis and approximation of the velocity tracking problem for Navier-Stokes flows with distributed control. SIAM J. Numer. Anal.37 (2000) 1481–1512.
- M. Hinze, Optimal and instantaneous control of the instationary Navier-Stokes equations. Habilitation, TU Berlin (2002).
- M. Hinze and K. Kunisch, Second-order methods for optimal control of time-dependent fluid flow. SIAM J. Control Optim.40 (2001) 925–946.
- H. Maurer and J. Zowe, First- and second-order conditions in infinite-dimensional programming problems. Math. Programming16 (1979) 98–110.
- H.D. Mittelmann and F. Tröltzsch, Sufficient optimality in a parabolic control problem, in Trends in Industrial and Applied Mathematics, A.H. Siddiqi and M. Kocvara Ed., Dordrecht, Kluwer (2002) 305–316.
- J.-P. Raymond and F. Tröltzsch, Second order sufficient optimality conditions for nonlinear parabolic control problems with state constraints. Discrete Contin. Dynam. Syst.6 (2000) 431–450.
- T. Roubíček and F. Tröltzsch, Lipschitz stability of optimal controls for the steady-state Navier-Stokes equations. Control Cybernet.32 (2002) 683–705.
- S. Sritharan, Dynamic programming of the Navier-Stokes equations. Syst. Control Lett.16 (1991) 299–307.
- R. Temam, Navier-Stokes equations. North Holland, Amsterdam (1979).
- F. Tröltzsch, Lipschitz stability of solutions of linear-quadratic parabolic control problems with respect to perturbations. Dyn. Contin. Discrete Impulsive Syst.7 (2000) 289–306.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.