Second-order sufficient optimality conditions for the optimal control of Navier-Stokes equations

Fredi Tröltzsch; Daniel Wachsmuth

ESAIM: Control, Optimisation and Calculus of Variations (2005)

  • Volume: 12, Issue: 1, page 93-119
  • ISSN: 1292-8119

Abstract

top
In this paper sufficient optimality conditions are established for optimal control of both steady-state and instationary Navier-Stokes equations. The second-order condition requires coercivity of the Lagrange function on a suitable subspace together with first-order necessary conditions. It ensures local optimality of a reference function in a Ls-neighborhood, whereby the underlying analysis allows to use weaker norms than L∞.

How to cite

top

Tröltzsch, Fredi, and Wachsmuth, Daniel. "Second-order sufficient optimality conditions for the optimal control of Navier-Stokes equations." ESAIM: Control, Optimisation and Calculus of Variations 12.1 (2005): 93-119. <http://eudml.org/doc/90792>.

@article{Tröltzsch2005,
abstract = { In this paper sufficient optimality conditions are established for optimal control of both steady-state and instationary Navier-Stokes equations. The second-order condition requires coercivity of the Lagrange function on a suitable subspace together with first-order necessary conditions. It ensures local optimality of a reference function in a Ls-neighborhood, whereby the underlying analysis allows to use weaker norms than L∞. },
author = {Tröltzsch, Fredi, Wachsmuth, Daniel},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Optimal control; Navier-Stokes equations; control constraints; second-order optimality conditions; first-order necessary conditions.; optimal control; second order optimality criterion},
language = {eng},
month = {12},
number = {1},
pages = {93-119},
publisher = {EDP Sciences},
title = {Second-order sufficient optimality conditions for the optimal control of Navier-Stokes equations},
url = {http://eudml.org/doc/90792},
volume = {12},
year = {2005},
}

TY - JOUR
AU - Tröltzsch, Fredi
AU - Wachsmuth, Daniel
TI - Second-order sufficient optimality conditions for the optimal control of Navier-Stokes equations
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2005/12//
PB - EDP Sciences
VL - 12
IS - 1
SP - 93
EP - 119
AB - In this paper sufficient optimality conditions are established for optimal control of both steady-state and instationary Navier-Stokes equations. The second-order condition requires coercivity of the Lagrange function on a suitable subspace together with first-order necessary conditions. It ensures local optimality of a reference function in a Ls-neighborhood, whereby the underlying analysis allows to use weaker norms than L∞.
LA - eng
KW - Optimal control; Navier-Stokes equations; control constraints; second-order optimality conditions; first-order necessary conditions.; optimal control; second order optimality criterion
UR - http://eudml.org/doc/90792
ER -

References

top
  1. F. Abergel and R. Temam, On some control problems in fluid mechanics. Theoret. Comput. Fluid Dynam.1 (1990) 303–325.  Zbl0708.76106
  2. R.A. Adams, Sobolev spaces. Academic Press, San Diego (1978).  Zbl0347.46040
  3. N. Arada, J.-P. Raymond and F. Tröltzsch, On an augmented Lagrangian SQP method for a class of optimal control problems in Banach spaces. Comput. Optim. Appl.22 (2002) 369–398.  Zbl1039.90094
  4. J.F. Bonnans, Second-order analysis for control constrained optimal control problems of semilinear elliptic equations. Appl. Math. Optim.38 (1998) 303–325.  Zbl0917.49020
  5. J.F. Bonnans and H. Zidani, Optimal control problems with partially polyhedric constraints. SIAM J. Control Optim.37 (1999) 1726–1741.  Zbl0945.49020
  6. H. Brezis, Analyse fonctionelle. Masson, Paris (1983).  
  7. E. Casas, An optimal control problem governed by the evolution Navier-Stokes equations, in Optimal control of viscous flows. Frontiers in applied mathematics, S.S. Sritharan Ed., SIAM, Philadelphia (1993).  
  8. E. Casas and M. Mateos, Second order optimality conditions for semilinear elliptic control problems with finitely many state constraints. SIAM J. Control Optim.40 (2002) 1431–1454.  Zbl1037.49024
  9. E. Casas and M. Mateos, Uniform convergence of the FEM. Applications to state constrained control problems. Comp. Appl. Math.21 (2002) 67–100.  Zbl1119.49309
  10. E. Casas, F. Tröltzsch and A. Unger, Second-order sufficient optimality conditions for a nonlinear elliptic control problem. J. Anal. Appl.15 (1996) 687–707.  Zbl0879.49020
  11. E. Casas, F. Tröltzsch and A. Unger, Second-order sufficient optimality conditions for some state-constrained control problems of semilinear elliptic equations. SIAM J. Control Optim.38 (2000) 1369–1391.  Zbl0962.49016
  12. P. Constantin and C. Foias, Navier-Stokes equations. The University of Chicago Press, Chicago (1988).  Zbl0687.35071
  13. R. Dautray and J.L. Lions, Evolution problems I, Mathematical analysis and numerical methods for science and technology5. Springer, Berlin (1992).  Zbl0755.35001
  14. M. Desai and K. Ito, Optimal controls of Navier-Stokes equations. SIAM J. Control Optim.32 (1994) 1428–1446.  Zbl0813.35078
  15. A.L. Dontchev, W.W. Hager, A.B. Poore and B. Yang, Optimality, stability, and convergence in optimal control. Appl. Math. Optim.31 (1995) 297–326.  Zbl0821.49022
  16. J.C. Dunn, On second-order sufficient conditions for structured nonlinear programs in infinite-dimensional function spaces, in Mathematical programming with data perturbations, A. Fiacco Ed., Marcel Dekker (1998) 83–107.  Zbl0891.90147
  17. H.O. Fattorini and S. Sritharan, Necessary and sufficient for optimal controls in viscous flow problems. Proc. Roy. Soc. Edinburgh124 (1994) 211–251.  Zbl0800.49047
  18. M.D. Gunzburger Ed., Flow control. Springer, New York (1995).  
  19. M.D. Gunzburger and S. Manservisi, The velocity tracking problem for Navier-Stokes flows with bounded distributed controls. SIAM J. Control Optim.37 (1999) 1913–1945.  Zbl0938.35118
  20. M.D. Gunzburger and S. Manservisi, Analysis and approximation of the velocity tracking problem for Navier-Stokes flows with distributed control. SIAM J. Numer. Anal.37 (2000) 1481–1512.  Zbl0963.35150
  21. M. Hinze, Optimal and instantaneous control of the instationary Navier-Stokes equations. Habilitation, TU Berlin (2002).  
  22. M. Hinze and K. Kunisch, Second-order methods for optimal control of time-dependent fluid flow. SIAM J. Control Optim.40 (2001) 925–946.  Zbl1012.49026
  23. H. Maurer and J. Zowe, First- and second-order conditions in infinite-dimensional programming problems. Math. Programming16 (1979) 98–110.  Zbl0398.90109
  24. H.D. Mittelmann and F. Tröltzsch, Sufficient optimality in a parabolic control problem, in Trends in Industrial and Applied Mathematics, A.H. Siddiqi and M. Kocvara Ed., Dordrecht, Kluwer (2002) 305–316.  
  25. J.-P. Raymond and F. Tröltzsch, Second order sufficient optimality conditions for nonlinear parabolic control problems with state constraints. Discrete Contin. Dynam. Syst.6 (2000) 431–450.  Zbl1010.49015
  26. T. Roubíček and F. Tröltzsch, Lipschitz stability of optimal controls for the steady-state Navier-Stokes equations. Control Cybernet.32 (2002) 683–705.  Zbl1127.49021
  27. S. Sritharan, Dynamic programming of the Navier-Stokes equations. Syst. Control Lett.16 (1991) 299–307.  Zbl0737.49021
  28. R. Temam, Navier-Stokes equations. North Holland, Amsterdam (1979).  Zbl0426.35003
  29. F. Tröltzsch, Lipschitz stability of solutions of linear-quadratic parabolic control problems with respect to perturbations. Dyn. Contin. Discrete Impulsive Syst.7 (2000) 289–306.  Zbl0954.49017

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.