A Bolza optimal synthesis problem for singular estimate control systems
Sufficient conditions for an equilibrium of maximal monotone operator to be in a given set are provided. This partially answers to a question posed in [10].
The criteria of extremality for classical variational integrals depending on several functions of one independent variable and their derivatives of arbitrary orders for constrained, isoperimetrical, degenerate, degenerate constrained, and so on, cases are investigated by means of adapted Poincare-Cartan forms. Without ambitions on a noble generalizing theory, the main part of the article consists of simple illustrative examples within a somewhat naive point of view in order to obtain results resembling...
Continuing the previous Part I, the degenerate first order variational integrals depending on two functions of one independent variable are investigated.
We will deal with a new geometrical interpretation of the classical Legendre and Jacobi conditions: they are represented by the rate and the magnitude of rotation of certain linear subspaces of the tangent space around the tangents to the extremals. (The linear subspaces can be replaced by conical subsets of the tangent space.) This interpretation can be carried over to nondegenerate Lagrange problems but applies also to the degenerate variational integrals mentioned in the preceding Part II.
Variational integrals containing several functions of one independent variable subjected moreover to an underdetermined system of ordinary differential equations (the Lagrange problem) are investigated within a survey of examples. More systematical discussion of two crucial examples from Part I with help of the methods of Parts II and III is performed not excluding certain instructive subcases to manifest the significant role of generalized Poincaré-Cartan forms without undetermined multipliers....
In this paper, the stability of a Timoshenko beam with time delays in the boundary input is studied. The system is fixed at the left end, and at the other end there are feedback controllers, in which time delays exist. We prove that this closed loop system is well-posed. By the complete spectral analysis, we show that there is a sequence of eigenvectors and generalized eigenvectors of the system operator that forms a Riesz basis for the state Hilbert space. Hence the system satisfies the spectrum...