Removing holes in topological shape optimization

Philippe Guillaume; Maatoug Hassine

ESAIM: Control, Optimisation and Calculus of Variations (2010)

  • Volume: 14, Issue: 1, page 160-191
  • ISSN: 1292-8119

Abstract

top
The gradient based topological optimization tools introduced during the last ten years tend naturally to modify the topology of a domain by creating small holes inside the domain. Once these holes have been created, they usually remain unchanged, at least during the topological phase of the optimization algorithm. In this paper, a new asymptotic expansion is introduced which allows to decide whether an existing hole must be removed or not for improving the cost function. Then, two numerical examples are presented: the first one compares topological optimization with standard shape optimization, and the second one, issued from a lake oxygenation problem, illustrates the use of the new asymptotic expansion.


How to cite

top

Guillaume, Philippe, and Hassine, Maatoug. "Removing holes in topological shape optimization." ESAIM: Control, Optimisation and Calculus of Variations 14.1 (2010): 160-191. <http://eudml.org/doc/90862>.

@article{Guillaume2010,
abstract = { The gradient based topological optimization tools introduced during the last ten years tend naturally to modify the topology of a domain by creating small holes inside the domain. Once these holes have been created, they usually remain unchanged, at least during the topological phase of the optimization algorithm. In this paper, a new asymptotic expansion is introduced which allows to decide whether an existing hole must be removed or not for improving the cost function. Then, two numerical examples are presented: the first one compares topological optimization with standard shape optimization, and the second one, issued from a lake oxygenation problem, illustrates the use of the new asymptotic expansion.
},
author = {Guillaume, Philippe, Hassine, Maatoug},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Topological optimization; topological sensitivity; topological gradient; shape optimization; Stokes equations; topological optimization; topological gradient; shape optimization},
language = {eng},
month = {3},
number = {1},
pages = {160-191},
publisher = {EDP Sciences},
title = {Removing holes in topological shape optimization},
url = {http://eudml.org/doc/90862},
volume = {14},
year = {2010},
}

TY - JOUR
AU - Guillaume, Philippe
AU - Hassine, Maatoug
TI - Removing holes in topological shape optimization
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 14
IS - 1
SP - 160
EP - 191
AB - The gradient based topological optimization tools introduced during the last ten years tend naturally to modify the topology of a domain by creating small holes inside the domain. Once these holes have been created, they usually remain unchanged, at least during the topological phase of the optimization algorithm. In this paper, a new asymptotic expansion is introduced which allows to decide whether an existing hole must be removed or not for improving the cost function. Then, two numerical examples are presented: the first one compares topological optimization with standard shape optimization, and the second one, issued from a lake oxygenation problem, illustrates the use of the new asymptotic expansion.

LA - eng
KW - Topological optimization; topological sensitivity; topological gradient; shape optimization; Stokes equations; topological optimization; topological gradient; shape optimization
UR - http://eudml.org/doc/90862
ER -

References

top
  1. M. Abdelwahed, M. Amara, F. El Dabaghi and M. Hassine, A numerical modelling of a two phase flow for water eutrophication problems. ECCOMAS 2000, European Congress on Computational Methods in Applied Sciences and Engineering, Barcelone, 11–14 September (2000).  
  2. G. Allaire and A. Henrot, On some recent advances in shape optimization. C. R. Acad. Sci. Paris, Ser. II B329 (2001) 383–396.  
  3. G. Allaire and R. Kohn, Optimal bounds on the effective behavior of a mixture of two well-orded elastic materials. Quart. Appl. Math.51 (1996) 643–674.  
  4. G. Allaire, F. Jouve and A.-M. Toader, Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys.194 (2004) 363–393.  
  5. S. Amstutz, M. Masmoudi and B. Samet, The topological asymptotic for the Helmholtz equation. SIAM J. Contr. Optim. 42 (2003) 1523–1544.  
  6. J.A. Bello, E. Fernández-Cara, J. Lemoine and J. Simon, The differentiability of the drag with respect to the variations of a lipschitz domain in a Navier-Stokes flow. SIAM J. Control Optim.35 (1997) 626–640.  
  7. M. Bendsoe, Optimal topology design of continuum structure: an introduction. Technical report, Departement of mathematics, Technical University of Denmark, DK2800 Lyngby, Denmark (1996).  
  8. M. Bendsoe, N. Olhoff and O. Sigmund, IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials. Springer (2006).  
  9. F. Brezzi and M. Fortin, Mixed and hybrid finite element method, Springer Series in Computational Mathematics15. Springer Verlag- New York (1991).  
  10. G. Buttazzo and G. Dal Maso, Shape optimization for Dirichlet problems: Relaxed formulation and optimality conditions. Appl. Math. Optim.23 (1991) 17–49.  
  11. J. Céa, Conception optimale ou identification de forme, calcul rapide de la dérivée directionnelle de la fonction coút. RAIRO Math. Modél. Anal. Numér.20 (1986) 371–402.  
  12. J. Céa, A. Gioan and J. Michel, Quelques résultats sur l'identification de domains. Calcolo (1973).  
  13. J. Céa, S. Garreau, P. Guillaume and M. Masmoudi, The shape and topological optimizations connection. Comput. Methods Appl. Mech. Engrg.188 (2000) 713–726.  
  14. M. Chipot and G. Dal Maso, Relaxed shape optimization: the case of nonnegative data for the Dirichlet problems. Adv. Math. Sci. Appl.1 (1992) 47–81.  
  15. P. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland (1978).  
  16. R. Dautray and J. Lions, Analyse mathémathique et calcul numérique pour les sciences et les techniques. Masson, collection CEA (1987).  
  17. S. Garreau, P. Guillaume and M. Masmoudi, The topological asymptotic for pde systems: the elasticity case. SIAM J. Control Optim.39 (2001) 1756–1778.  
  18. V. Girault and P.A. Raviart, Finite element methods for Navier-Stokes equations, Theory and Algorithms. Springer Verlag (1986).  
  19. R. Glowinski and O. Pironneau, Toward the computational of minimun drag profile in viscous laminar flow. Appl. Math. Model.1 (1976) 58–66.  
  20. P. Guillaume, Dérivées d'ordre supérieur en conception optimale de forme. Ph.D. thesis, Université Paul Sabatier, Toulouse, France (1994).  
  21. P. Guillaume and M. Masmoudi, Computation of high order derivatives in optimal shape design. Numer. Math.67 (1994) 231–250.  
  22. P. Guillaume and K. Sid Idris, The topological asymptotic expansion for the Dirichlet Problem. SIAM J. Control. Optim.41 (2002) 1052–1072.  
  23. P. Guillaume and K. Sid Idris, Topological sensitivity and shape optimization for the Stokes equations. SIAM J. Control Optim.43 (2004) 1–31.  
  24. M.D. Gunzburger and H. Kim, Existence of an optimal solution of a shape control problem for the stationary Navier-Stokes equations. SIAM J. Control Optim.36 (1998) 895–909.  
  25. M. Hassine and M. Masmoudi, The topological sensitivity analysis for the Quasi-Stokes problem. ESAIM: COCV10 (2004) 478–504.  
  26. J. Jacobsen, N. Olhoff and E. Ronholt, Generalized shape optimization of three-dimensionnal structures using materials with optimum microstructures. Technical report, Institute of Mechanical Engineering, Aalborg University, DK-9920 Aalborg, Denmark (1996).  
  27. J.L. Lions and E. Magenes, Problèmes aux limites non homogenes et applications. Dunod (1968).  
  28. M. Masmoudi, The topological asymptotic, in Computational Methods for Control Applications, H. Kawarada and J. Periaux Eds., International Séries Gakuto (2002).  
  29. M. Masmoudi, J. Pommier and B. Samet, The topological asymptotic expansion for the Maxwell equations and some applications. Inverse Probl.21 (2005) 547–564.  
  30. V. Mazja, S.A. Nazarov and B.A. Plamenevski, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains. Vol. I, Birkhäuser (2000).  
  31. O. Pironneau, On optimum profiles in Stokes flow. J. Fluid Mech.59 (1973) 117–128.  
  32. O. Pironneau, Optimal Shape Design for Elliptic Systems. Springer, Berlin (1984).  
  33. A. Schumacher, Topologieoptimierung von bauteilstrukturen unter verwendung von lopchpositionierungkrieterien. Ph.D. thesis, Universitat-Gesamthochschule-Siegen (1995).  
  34. M. Shœnauer, L. Kallel and F. Jouve, Mechanical inclusions identification by evolutionary computation. Revue européenne des éléments finis5 (1996) 619–648.  
  35. J. Simon, Domain variation for Stokes flow, in Lect. Notes Control Inform. Sci.159, X. Li and J. Yang Eds., Springer, Berlin (1990) 28–42.  
  36. J. Simon, Domain variation for drag Stokes flows, in Lect. Notes Control Inform. Sci.114, A. Bermudez Eds., Springer, Berlin (1987) 277–283.  
  37. J. Sokolowski and A. Zochowski, On the topological derivative in shape optimization. SIAM J. Control Optim.37 (1999) 1251–1272 (electronic)  
  38. J. Sokolowski and A. Zochowski, Modelling of topological derivatives for contact problems. Numer. Math.102 (2005) 145–179.  
  39. R. Temam, Navier Stokes equations (1985).  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.