Topological sensitivity analysis for time-dependent problems

Samuel Amstutz; Takéo Takahashi; Boris Vexler

ESAIM: Control, Optimisation and Calculus of Variations (2007)

  • Volume: 14, Issue: 3, page 427-455
  • ISSN: 1292-8119

Abstract

top
The topological sensitivity analysis consists in studying the behavior of a given shape functional when the topology of the domain is perturbed, typically by the nucleation of a small hole. This notion forms the basic ingredient of different topology optimization/reconstruction algorithms. From the theoretical viewpoint, the expression of the topological sensitivity is well-established in many situations where the governing p.d.e. system is of elliptic type. This paper focuses on the derivation of such formulas for parabolic and hyperbolic problems. Different kinds of cost functionals are considered.

How to cite

top

Amstutz, Samuel, Takahashi, Takéo, and Vexler, Boris. "Topological sensitivity analysis for time-dependent problems." ESAIM: Control, Optimisation and Calculus of Variations 14.3 (2007): 427-455. <http://eudml.org/doc/90877>.

@article{Amstutz2007,
abstract = { The topological sensitivity analysis consists in studying the behavior of a given shape functional when the topology of the domain is perturbed, typically by the nucleation of a small hole. This notion forms the basic ingredient of different topology optimization/reconstruction algorithms. From the theoretical viewpoint, the expression of the topological sensitivity is well-established in many situations where the governing p.d.e. system is of elliptic type. This paper focuses on the derivation of such formulas for parabolic and hyperbolic problems. Different kinds of cost functionals are considered. },
author = {Amstutz, Samuel, Takahashi, Takéo, Vexler, Boris},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Topological sensitivity; topology optimization; parabolic equations; hyperbolic equations; topological sensitivity},
language = {eng},
month = {11},
number = {3},
pages = {427-455},
publisher = {EDP Sciences},
title = {Topological sensitivity analysis for time-dependent problems},
url = {http://eudml.org/doc/90877},
volume = {14},
year = {2007},
}

TY - JOUR
AU - Amstutz, Samuel
AU - Takahashi, Takéo
AU - Vexler, Boris
TI - Topological sensitivity analysis for time-dependent problems
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2007/11//
PB - EDP Sciences
VL - 14
IS - 3
SP - 427
EP - 455
AB - The topological sensitivity analysis consists in studying the behavior of a given shape functional when the topology of the domain is perturbed, typically by the nucleation of a small hole. This notion forms the basic ingredient of different topology optimization/reconstruction algorithms. From the theoretical viewpoint, the expression of the topological sensitivity is well-established in many situations where the governing p.d.e. system is of elliptic type. This paper focuses on the derivation of such formulas for parabolic and hyperbolic problems. Different kinds of cost functionals are considered.
LA - eng
KW - Topological sensitivity; topology optimization; parabolic equations; hyperbolic equations; topological sensitivity
UR - http://eudml.org/doc/90877
ER -

References

top
  1. G. Allaire, F. de Gournay, F. Jouve and A.-M. Toader, Structural optimization using topological and shape sensitivity via a level set method. Control Cybern.34 (2005) 59–80.  Zbl1167.49324
  2. H. Ammari and H. Kang, Reconstruction of small inhomogeneities from boundary measurements, Lecture Notes in Mathematics1846. Springer-Verlag, Berlin (2004).  Zbl1113.35148
  3. H. Ammari and H. Kang, Reconstruction of elastic inclusions of small volume via dynamic measurements. Appl. Math. Optim.54 (2006) 223–235.  Zbl1102.35306
  4. H. Ammari and H. Kang, Generalized polarization tensors, inverse conductivity problems, and dilute composite materials: a review, in Inverse problems, multi-scale analysis and effective medium theory, Contemp. Math.408, Amer. Math. Soc., Providence, RI (2006) 1–67.  Zbl1111.35101
  5. S. Amstutz, Sensitivity analysis with respect to a local perturbation of the material property. Asymptotic Anal.49 (2006) 87–108.  Zbl1187.49036
  6. S. Amstutz and H. Andrä, A new algorithm for topology optimization using a level-set method. J. Comput. Phys.216 (2006) 573–588.  Zbl1097.65070
  7. S. Amstutz and N. Dominguez, Topological sensitivity analysis in the context of ultrasonic nondestructive testing. RICAM report 2005-21 (2005).  Zbl1244.74105
  8. S. Amstutz, I. Horchani and M. Masmoudi, Crack detection by the topological gradient method. Control Cybern.34 (2005) 81–101.  Zbl1167.74437
  9. M. Bonnet, Topological sensitivity for 3d elastodynamic and acoustic inverse scattering in the time domain. Comput. Meth. Appl. Mech. Engrg.195 (2006) 5239–5254.  Zbl1119.74026
  10. M. Bonnet and B.B. Guzina, Sounding of finite solid bodies by way of topological derivative. Int. J. Numer. Methods Eng.61 (2004) 2344–2373.  Zbl1075.74564
  11. M. Burger, B. Hackl and W. Ring, Incorporating topological derivatives into level set methods. J. Comput. Phys.194 (2004) 344–362.  Zbl1044.65053
  12. T. Cazenave and A. Haraux, Introduction aux problèmes d'évolution semi-linéaires, Mathématiques & Applications1. Ellipses, Paris (1990).  Zbl0786.35070
  13. R. Dautray and J.-L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques, Vol. 6. INSTN: Collection Enseignement, Masson, Paris (1988).  Zbl0642.35001
  14. H.A. Eschenauer and A. Schumacher, Topology and shape optimization procedures using hole positioning criteria — theory and applications, in Topology optimization in structural mechanics, CISM Courses and Lectures374, Springer, Vienna (1997) 135–196.  Zbl0885.73050
  15. H.A. Eschenauer, V.V. Kobolev and A. Schumacher, Bubble method for topology and shape optimization of structures. Struct. Optimization8 (1994) 42–51.  
  16. S. Garreau, P. Guillaume and M. Masmoudi, The topological asymptotic for PDE systems: the elasticity case. SIAM J. Control Optim.39 (2001) 1756–1778 (electronic).  Zbl0990.49028
  17. P. Guillaume and K. Sid Idris, The topological asymptotic expansion for the Dirichlet problem. SIAM J. Control Optim.41 (2002) 1042–1072 (electronic).  Zbl1053.49031
  18. B.B. Guzina and M. Bonnet, Topological derivative for the inverse scattering of elastic waves. Quart. J. Mech. Appl. Math.57 (2004) 161–179.  Zbl1112.74035
  19. J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 2. Travaux et Recherches Mathématiques18. Dunod, Paris (1968).  Zbl0165.10801
  20. S.A. Nazarov and J. Sokolowski, The topological derivative of the Dirichlet integral under the formation of a thin bridge. Siberian Math. J.45 (2004) 341–355.  Zbl1071.35037
  21. G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics. Annals of Mathematics Studies27. Princeton University Press, Princeton, N. J. (1951).  Zbl0044.38301
  22. J. Pommier and B. Samet, The topological asymptotic for the Helmholtz equation with Dirichlet condition on the boundary of an arbitrarily shaped hole. SIAM J. Control Optim.43 (2004) 899–921 (electronic).  Zbl1080.49028
  23. M. Schiffer and G. Szegö, Virtual mass and polarization. Trans. Amer. Math. Soc.67 (1949) 130–205.  Zbl0035.11803
  24. A. Schumacher, Topologieoptimierung von bauteilstrukturen unter verwendung von lopschpositionierungskriterien. Ph.D. thesis, Univ. Siegen (1995).  
  25. J. Sokołowski and A. Żochowski, On the topological derivative in shape optimization. SIAM J. Control Optim.37 (1999) 1251–1272 (electronic).  Zbl0940.49026

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.