Homogenization of constrained optimal control problems for one-dimensional elliptic equations on periodic graphs
Peter I. Kogut; Günter Leugering
ESAIM: Control, Optimisation and Calculus of Variations (2008)
- Volume: 15, Issue: 2, page 471-498
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- H. Attouch, Variational Convergence for Functional and Operators, Applicable Mathematics Series. Pitman, Boston-London (1984).
- A. Bensoussan, J.L. Lions and G. Papanicolau, Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam (1978).
- G. Bouchitte and I. Fragala, Homogenization of thin structures by two-scale method with respect to measures. SIAM J. Math. Anal.32 (2001) 1198–1226.
- A. Braides, Γ-convergence for Beginners. Oxford University Press, Oxford (2002).
- G. Buttazzo, Γ-convergence and its applications to some problems in the calculus of variations, in School on Homogenization, ICTP, Trieste, September 6–17, 1993, SISSA (1994) 38–61.
- G. Buttazzo and G. Dal Maso, Γ-convergence and optimal control problems. J. Optim. Theory Appl.32 (1982) 385–407.
- J. Casado-Diaz, M. Luna-Laynez and J.D. Marin, An adaption of the multi-scale methods for the analysis of very thin reticulated structures. C. R. Acad. Sci. Paris Sér. I332 (2001) 223–228.
- G. Chechkin, V. Zhikov, D. Lukkassen and A. Piatnitski, On homogenization of networks and junctions. J. Asymp. Anal.30 (2000) 61–80.
- D. Cioranescu and F. Murat, A strange term coming from nowhere, in Topic in the Math. Modelling of Composit Materials, Boston, Birkhäuser, Prog. Non-linear Diff. Equ. Appl.31 (1997) 49–93.
- D. Cioranescu, P. Donato and E. Zuazua, Exact boundary controllability for the wave equation in domains with small holes. J. Math. Pures Appl.69 (1990) 1–31.
- C. Conca, A. Osses and J. Saint Jean Paulin, A semilinear control problem involving in homogenization. Electr. J. Diff. Equ. (2001) 109–122.
- G. Dal Maso, An Introduction of Γ-Convergence. Birkhäuser, Boston (1993).
- A. Haraux and F. Murat, Perturbations singulières et problèmes de contrôle optimal : deux cas bien posés. C. R. Acad. Sci. Paris Sér. I297 (1983) 21–24.
- A. Haraux and F. Murat, Perturbations singulières et problèmes de contrôle optimal : un cas mal posé. C. R. Acad. Sci. Paris Sér. I297 (1983) 93–96.
- S. Kesavan and M. Vanninathan, L'homogénéisation d'un problème de contrôle optimal. C. R. Acad. Sci. Paris Sér. A-B285 (1977) 441–444.
- S. Kesavan and J. Saint Jean Paulin, Optimal control on perforated domains. J. Math. Anal. Appl.229 (1999) 563–586.
- P.I. Kogut, S-convergence in homogenization theory of optimal control problems. Ukrain. Matemat. Zhurnal49 (1997) 1488–1498 (in Russian).
- P.I. Kogut and G. Leugering, Homogenization of optimal control problems in variable domains. Principle of the fictitious homogenization. Asymptotic Anal.26 (2001) 37–72.
- P.I. Kogut and G. Leugering, Asymptotic analysis of state constrained semilinear optimal control problems. J. Optim. Theory Appl.135 (2007) 301–321.
- P.I. Kogut and G. Leugering, Homogenization of Dirichlet optimal control problems with exact partial controllability constraints. Asymptotic Anal.57 (2008) 229–249.
- P.I. Kogut and T.A. Mel'nyk, Asymptotic analysis of optimal control problems in thick multi-structures, in Generalized Solutions in Control Problems, Proceedings of the IFAC Workshop GSCP-2004, Pereslavl-Zalessky, Russia, September 21–29 (2004) 265–275.
- J.E. Lagnese and G. Leugering, Domain decomposition methods in optimal control of partial differential equations, International Series of Numerical Mathematics148. Birkhäuser Verlag, Basel (2004).
- M. Lenczner and G. Senouci-Bereski, Homogenization of electrical networks including voltage to voltage amplifiers. Math. Meth. Appl. Sci.9 (1999) 899–932.
- G. Leugering and E.J.P.G. Schmidt, On the modelling and stabilization of flows in networks of open canals. SIAM J. Contr. Opt.41 (2002) 164–180.
- J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations. Berlin, Springer-Verlag (1971).
- V. Mazja and A. Slutsckij, Averaging of a differential operator on thick periodic grid. Math. Nachr.133 (1987) 107–133.
- R. Orive and E. Zuazua, Finite difference approximation of homogenization for elliptic equation. Multiscale Model. Simul.4 (2005) 36–87.
- G.P. Panasenko, Asymptotic solutions of the elasticity theory system of equations for lattice and skeletal structures. Russian Academy Sci. Sbornik Math.75 (1993) 85–110.
- G.P. Panasenko, Homogenization of lattice-like domains. L-convergence. Reprint No. 178, Analyse numérique, Lyon Saint-Étienne (1994).
- T. Roubiček, Relaxation in Optimization Theory and Variational Calculus. Walter de Gruyter, Berlin, New York (1997).
- J. Saint Jean Paulin and D. Cioranescu, Homogenization of Reticulated Structures, Applied Mathematical Sciences136. Springer-Verlag, Berlin-New York (1999).
- J. Saint Jean Paulin and H. Zoubairi, Optimal control and “strange term” for the Stokes problem in perforated domains. Portugaliac Mathematica59 (2002) 161–178.
- M. Vogelius, A homogenization result for planar, polygonal networks. RAIRO Modél. Math. Anal. Numér.25 (1991) 483–514.
- V.V. Zhikov, Weighted Sobolev spaces. Sbornik: Mathematics189 (1998) 27–58.
- V.V. Zhikov, On an extension of the method of two-scale convergence and its applications. Sbornik: Mathematics191 (2000) 973–1014.
- V.V. Zhikov, Homogenization of elastic problems on singular structures. Izvestija: Math.66 (2002) 299–365.
- V.V. Zhikov, S.M. Kozlov and O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals. Springer-Verlag, Berlin (1994).