Lipschitz modulus in convex semi-infinite optimization via d.c. functions
María J. Cánovas; Abderrahim Hantoute; Marco A. López; Juan Parra
ESAIM: Control, Optimisation and Calculus of Variations (2008)
- Volume: 15, Issue: 4, page 763-781
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- J.V. Burke and M.C. Ferris, Weak sharp minima in mathematical programming. SIAM J. Contr. Opt.31 (1993) 1340–1359.
- M.J. Cánovas, F.J. Gómez-Senent and J. Parra, On the Lipschitz modulus of the argmin mapping in linear semi-infinite optimization. Set-Valued Anal. (2007) Online First.
- M.J. Cánovas, D. Klatte, M.A. López and J. Parra, Metric regularity in convex semi-infinite optimization under canonical perturbations. SIAM J. Optim.18 (2007) 717–732.
- M.J. Cánovas, A. Hantoute, M.A. López and J. Parra, Lipschitz behavior of convex semi-infinite optimization problems: A variational approach. J. Global Optim. 41 (2008) 1–13.
- M.J. Cánovas, A. Hantoute, M.A. López and J. Parra, Stability of indices in the KKT conditions and metric regularity in convex semi-infinite optimization. J. Optim. Theory Appl. (2008) Online First.
- M.J. Cánovas, A. Hantoute, M.A. López and J. Parra, Lipschitz modulus of the optimal set mapping in convex semi-infinite optimization via minimal subproblems. Pacific J. Optim. (to appear).
- E. De Giorgi, A. Marino and M. Tosques, Problemi di evoluzione in spazi metrici e curve di massima pendenza. Atti Acad. Nat. Lincei, Rend, Cl. Sci. Fiz. Mat. Natur.68 (1980) 180–187.
- V.F. Demyanov and A.M. Rubinov, Quasidifferentiable functionals. Dokl. Akad. Nauk SSSR250 (1980) 21–25 (in Russian).
- V.F. Demyanov and A.M. Rubinov, Constructive nonsmooth analysis, Approximation & Optimization7. Peter Lang, Frankfurt am Main (1995).
- A.V. Fiacco and G.P. McCormick, Nonlinear programming. Wiley, New York (1968).
- M.A. Goberna and M.A. López, Linear Semi-Infinite Optimization. John Wiley & Sons, Chichester, UK (1998).
- J.-B. Hiriart-Urruty and C. Lemaréchal, Convex analysis and minimization algorithms, I. Fundamentals, Grundlehren der Mathematischen Wissenschaften305. Springer-Verlag, Berlin (1993).
- A.D. Ioffe, Metric regularity and subdifferential calculus. Uspekhi Mat. Nauk55 (2000) 103–162; English translation in Math. Surveys55 (2000) 501–558.
- A.D. Ioffe, On rubustness of the regularity property of maps. Control Cybern.32 (2003) 543–554.
- D. Klatte and B. Kummer, Nonsmooth Equations in Optimization. Regularity, Calculus, Methods and Applications. Kluwer Academic Publ., Dordrecht (2002).
- D. Klatte and B. Kummer, Strong Lipschitz stability of stationary solutions for nonlinear programs and variational inequalities. SIAM J. Optim.16 (2005) 96–119.
- D. Klatte and G. Thiere, A note of Lipschitz constants for solutions of linear inequalities and equations. Linear Algebra Appl.244 (1996) 365–374.
- P.-J. Laurent, Approximation et Optimisation. Hermann, Paris (1972).
- W. Li, The sharp Lipschitz constants for feasible and optimal solutions of a perturbed linear program. Linear Algebra Appl.187 (1993) 15–40.
- B.S. Mordukhovich, Variational Analysis and Generalized Differentiation I. Springer-Verlag, Berlin (2006).
- G. Nürnberger, Unicity in semi-infinite optimization, in Parametric Optimization and Approximation, B. Brosowski, F. Deutsch Eds., Birkhäuser, Basel (1984) 231–247.
- S.M. Robinson, Bounds for error in the solution set of a perturbed linear program. Linear Algebra Appl.6 (1973) 69–81.
- R.T. Rockafellar, Convex Analysis. Princeton University Press, Princeton, USA (1970).
- R.T. Rockafellar and R.J.-B. Wets, Variational Analysis. Springer-Verlag, Berlin (1997).
- M. Studniarski and D.E. Ward, Weak sharp minima: Characterizations and sufficient conditions. SIAM J. Contr. Opt.38 (1999) 219–236.
- M. Valadier, Sous-différentiels d'une borne supérieure et d'une somme continue de fonctions convexes. C. R. Acad. Sci. Paris268 (1969) 39–42.