Sums of squares and quadratric forms in real algebraic geometry

Eberhard Becker

Cahiers du séminaire d'histoire des mathématiques (1991)

  • Volume: 1, page 41-57
  • ISSN: 0767-7421

How to cite

top

Becker, Eberhard. "Sums of squares and quadratric forms in real algebraic geometry." Cahiers du séminaire d'histoire des mathématiques 1 (1991): 41-57. <http://eudml.org/doc/91023>.

@article{Becker1991,
author = {Becker, Eberhard},
journal = {Cahiers du séminaire d'histoire des mathématiques},
keywords = {real spectrum; Witt ring; real algebraic geometry; quadratic forms},
language = {eng},
pages = {41-57},
publisher = {Institut Henri Poincaré, Séminaire d'histoire des mathématiques : Paris},
title = {Sums of squares and quadratric forms in real algebraic geometry},
url = {http://eudml.org/doc/91023},
volume = {1},
year = {1991},
}

TY - JOUR
AU - Becker, Eberhard
TI - Sums of squares and quadratric forms in real algebraic geometry
JO - Cahiers du séminaire d'histoire des mathématiques
PY - 1991
PB - Institut Henri Poincaré, Séminaire d'histoire des mathématiques : Paris
VL - 1
SP - 41
EP - 57
LA - eng
KW - real spectrum; Witt ring; real algebraic geometry; quadratic forms
UR - http://eudml.org/doc/91023
ER -

References

top
  1. [A] Artin E. : Uber die Zerlegung definiter Funktionen in Quadrate. Hamb. Abh. 5,100-115 ( 1927). Zbl52.0122.01JFM52.0122.01
  2. [A-B] Andradas C. and Becker E. : Real stability index of rings and its application to semialgebraic geometry. In : Séminaire sur les structures algébriques ordonnées ( 1984-1987), Publications mathématiques de l'Université de Paris VII33, 61-86 ( 1990). Zbl0742.14043MR1071791
  3. [Ba] Baeza R. : Quadratic forms over semi-local rings. LN in Math. 655 ( 1978). Zbl0382.10014
  4. [Bel] Becker E. : Valuations and real places in the theory of formally real fields. In : Géométrie algébrique réelle et formes quadratiques, LN in Mathematics 959,1-40 ( 1982). Zbl0508.14013MR683127
  5. [Be2] Becker E. : The real holomorphy ring and sum of 2n-th power. In : Géométrie algébrique réelle et formes quadratiques, LN in Mathematics 959, 139-181 ( 1982). Zbl0508.12020MR683132
  6. [Be3] Becker E. : On the real spectrum of a ring and its application to semialgebraic geometry, Bull. AMS 15,1 ( 1986), 19-60. Zbl0634.14016MR838786
  7. [B-B-D-G] Becker E., Berr R., Delon F., Gondard D. : Hilbert's 17th problem for sums 2n-th powers. Preprint ( 1990). Zbl0807.14045
  8. [B-R] Benedetti R., Risler J.-J. : Real algebraic and semi algebraic sets. Hermann Editeurs, Paris ( 1990). Zbl0694.14006MR1070358
  9. [B-C-R] Bochnak J., Coste M., Roy M.-F. : Géométrie algébrique réelle, Ergebn. der Math. 3 Folge Bd. 12, Springer-Verlag, Berlin-Heidelberg ( 1987). Zbl0633.14016MR949442
  10. [B1] Borchardt C. : Développements sur l'équation à l'aide de laquelle on détermine les inégalités séculaires du mouvement des planètes. J. Math. Pures Appl. 12, 50-67 (5) ( 1847), 
  11. [B2] Borchardt C. : Remarque relative à la note précédente. J. Reine Angew. Math. 53, 367-368 ( 1857). 
  12. [Br1] Brumfiel G.W. : Witt rings and K-theory. Rocky Mtn. J. Math. 14, 733-765 ( 1984). Zbl0576.14024MR773113
  13. [Br2] Brumfiel G.W. : The real spectrum of an ideal and KO-theory exact sequences. K-theory 1 211-235 ( 1987). Zbl0631.14018MR908991
  14. [Brö] Bröcker L. : Minimale Erzeugung von Positivbereichen. Geom. Dedicata 16,335-350 ( 1984). Zbl0546.14016MR765338
  15. [Bu] Buchberger B. : Gröbner bases : an algorithrnic method in polynomial ideal theory. In : Multidimensional Systems Theory (N.K. Bose ed.), D. Reidel Publishing Company, Dordrecht-Boston-Lancaster, 184-232 ( 1985). Zbl0587.13009MR835951
  16. [CaGaHe] Caniglia L., Galligo A., Heintz J. : Some new effectivity bounds in computational geometry. In : LN in Computer Science 357 ( 1988). Zbl0685.68044MR1008498
  17. [G] Gantmacher F.R. : Applications of the theory of matrices. Interscience Publischers, New-York - London - Sidney ( 1959). Zbl0085.01001MR107648
  18. [GiTrZ] Gianni P., Trager B., Zacharias G. : Gröbner bases and primary decomposition of polynomial ideals. In : Computational aspects of commutative algebra (L. Robbiano ed.), Acad. Press London, 15-33 ( 1989). MR988410
  19. [GLRR] Gonzalez L., Lombardi H., Recio T., Roy M.-F. : Spécialisation de la suite de Sturm et sous-résultants. Revue d'informatique théorique, to appear. Zbl0732.68059
  20. [H1] Hermite C. : Sur l'extension du théorème de M. Sturm à un système d'équation simultanées. C.R. Acad. Sci. Paris 35, 52-54 (6,11,12,12) ( 1852). 
  21. [H2] Hermite C. : Remarques sur le théorème de M. Sturm, C.R. Acad. Sci. Paris 36 294-297 (6,8,10) ( 1853). 
  22. [H3] Hermite C. : Extrait d'une lettre de Mr. Ch. Hermite de Paris à Mr. Borchardt de Berlin, sur le nombre des racines d'une équation algébrique comprises entre les limites données, J. Reine Angew. Math. 52, 39-51 (6,7,17,20,24,27,27,32) ( 1856). 
  23. [H-M] Houdebine J., Mahé L. : Séparations des composantes connexes réelles dans le cas des variétés projectives. In : LN in Math. 959, 358-370 ( 1982). Zbl0521.14008MR683142
  24. [K] Kohvidov I.S. : Hankel and Toeplitz matrices and forms. Birkhäuser-Verlag, Boston-Basel-Stuttgart ( 1982). Zbl0493.15018MR677503
  25. [Kn] Knebusch M. : An invitation to real spectra. In : 1983 Conference on quadratic forms and hermitian K-theory (C.R. Riehm, J, Hambleton ed.) Can. Math. Soc. Conf. Proc. 4 ( 1984). Zbl0586.14015MR776447
  26. [Kn-S] Knebusch M, Scheiderer C. : Einfürhrung in die reelle Algebra. Vieweg-Verlag, Braunschweig/Wiesbaden ( 1989). Zbl0732.12001MR1029278
  27. [Kr-N] Krein M.G., Naimark M.A. : The method of symmetric and hermitian forms in the theory of the separation of the roots of algebraic equations. Linear and Multilinear Algebra 10, 265-308 ( 1981). Zbl0584.12018MR638124
  28. [L] Lam T.Y. : An introduction to real algebra. Rocky Mtn. J. Math. 14, 767-814 ( 1984). Zbl0577.14016MR773114
  29. [Ma1] Mahé L. : Signatures et composantes connexes. Math. Ann. 260, 191-210 ( 1982). Zbl0507.14019MR664376
  30. [Ma2] Mahé L. : Théorème de Pfister pour les variétés et anneaux de Witt réduits. Invent. Math. 85, 53-72 ( 1986). Zbl0601.14019MR842048
  31. [M-H] Milnor J., Husemoller D. : Symmetric bilinear forms. Ergebn. der Math. 73, Springer-Verlag, Berlin-Heidelberg ( 1973). Zbl0292.10016MR506372
  32. [Ob] Obreschkoff N. : Verteilung und Berechnung der Nulsstellen reeller Polynom., VEB Deutscher Verlagder Wissenschaften, Berlin ( 1963). Zbl0156.28202MR164003
  33. [P] Pfister A. : Hilbert's seventeenth problem and related problem on definite forms. In : Mathematical developments arising from Hilbert Problems, Proc. Symp. Pure Math. 28, part 2, 483-489 ( 1976). Zbl0337.12101MR424679
  34. [Sch] Scheiderer C. : Stability index of real varieties. Invent. Math. 97, 467-483 ( 1989). Zbl0715.14049MR1005003
  35. [Se] Seidenberg A. : Constructions in Algebra. Trans AMS 197, 273-313 ( 1974). Zbl0356.13007MR349648
  36. [S] Sylvester J. : On a theory of the syzygetic relations of two rational integral functions, comprising an application to the theory of Sturm's functions, and that of the greatest Algebraical Common Measure. Philos. Trans. Roy. Soc. London 143,407-548 (7,8,10,13,17,19) ( 1853). 
  37. [Schw] Schwartz N. : Der Raum der Zusammenhangskomponenten einer reellen Varietät, Geom. Dedicata 13 ( 1983), 361-397. Zbl0508.14015MR699882

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.