On the Euler characteristic of fibres of real polynomial maps

Adam Parusiński; Zbigniew Szafraniec

Banach Center Publications (1998)

  • Volume: 44, Issue: 1, page 175-182
  • ISSN: 0137-6934

Abstract

top
Let Y be a real algebraic subset of m and F : Y n be a polynomial map. We show that there exist real polynomial functions g 1 , . . . , g s on n such that the Euler characteristic of fibres of F is the sum of signs of g i .

How to cite

top

Parusiński, Adam, and Szafraniec, Zbigniew. "On the Euler characteristic of fibres of real polynomial maps." Banach Center Publications 44.1 (1998): 175-182. <http://eudml.org/doc/208880>.

@article{Parusiński1998,
abstract = {Let Y be a real algebraic subset of $^m$ and $F:Y → ^n$ be a polynomial map. We show that there exist real polynomial functions $g_1, ..., g_s$ on $^n$ such that the Euler characteristic of fibres of $F$ is the sum of signs of $g_i$.},
author = {Parusiński, Adam, Szafraniec, Zbigniew},
journal = {Banach Center Publications},
keywords = {real algebraic subset; Euler characteristic},
language = {eng},
number = {1},
pages = {175-182},
title = {On the Euler characteristic of fibres of real polynomial maps},
url = {http://eudml.org/doc/208880},
volume = {44},
year = {1998},
}

TY - JOUR
AU - Parusiński, Adam
AU - Szafraniec, Zbigniew
TI - On the Euler characteristic of fibres of real polynomial maps
JO - Banach Center Publications
PY - 1998
VL - 44
IS - 1
SP - 175
EP - 182
AB - Let Y be a real algebraic subset of $^m$ and $F:Y → ^n$ be a polynomial map. We show that there exist real polynomial functions $g_1, ..., g_s$ on $^n$ such that the Euler characteristic of fibres of $F$ is the sum of signs of $g_i$.
LA - eng
KW - real algebraic subset; Euler characteristic
UR - http://eudml.org/doc/208880
ER -

References

top
  1. [B] E. Becker, Sums of squares and trace forms in real algebraic geometry, in: De la géométrie algébrique réelle (Paris, 1990), Cahiers Sém. Hist. Math. Sér. 2 vol. 1, Université Pierre et Marie Curie, Paris, 1991, 41-57. 
  2. [BW] E. Becker, T. Wöermann, On the trace formula for quadratic forms and some applications, in: Recent Advances in Real Algebraic Geometry and Quadratic Forms, Contemp. Math. 155, Amer. Math. Soc., Providence, 1994, 271-291. 
  3. [BR] R. Benedetti, J.-J. Risler, Real Algebraic and Semi-algebraic Sets, Actualités Math., Hermann, Paris, 1990. Zbl0694.14006
  4. [BCR] J. Bochnak, M. Coste, M.-F. Roy, Géométrie algébrique réelle, Ergeb. Math. Grenzgeb. (3) 12, Springer, Berlin, 1987. Zbl0633.14016
  5. [CK] M. Coste, K. Kurdyka, Le discriminant d'un morphisme de variétés algébriques réelles, Topology 37 (1998), 393-400. 
  6. [He1] C. Hermite, Remarques sur le théorème de Sturm, C. R. Acad. Sci. Paris 36 (1853), 52-54. 
  7. [He2] C. Hermite, Sur l'extension du théorème de M. Sturm à un système d'équations simultanées, Oeuvres de Charles Hermite, Tome 3, ed. E. Picard, Edition Paris, Gauthier-Villars, 1912, 1-34. 
  8. [MP] C. McCrory, A. Parusiński, Algebraically constructible functions, Ann. Scient. École Norm. Sup. (4) 30 (1997), 527-552. Zbl0913.14018
  9. [MS] A. Mostowski, M. Stark, Elementy algebry wyższej, Państwowe Wydawnictwo Naukowe, Warszawa, 1963 (in Polish); English translation: Introduction to Higher Algebra, Internat. Series of Monographs on Pure and Appl. Math. 37, A Pergamon Press Book, New York, and Państwowe Wydawnictwo Naukowe, Warszawa, 1964. 
  10. [PS] A. Parusiński, Z. Szafraniec, Algebraically constructible functions and signs of polynomials, Manuscripta Math. 93 (1997), 443-456. Zbl0913.14019
  11. [PRS] P. Pedersen, M.-F. Roy, A. Szpirglas, Counting real zeros in the multivariate case, in: Computational Algebraic Geometry, F. Eyssette, A. Galligo (eds.), Progr. Math. 109, Birkhäuser, Boston, 1993, 203-223. Zbl0806.14042
  12. [Syl] J. J. Sylvester, On a theory of syzygetic relations of two rational integral functions, comprising an application to the theory of Sturm's functions, Philos. Trans. Roy. Soc. London 143 (1853). 
  13. [V] O. Y. Viro, Some integral calculus based on Euler characteristic, in: Topology and Geometry-Rohlin Seminar, O. Y. Viro (ed.), Lecture Notes in Math. 1346, Springer, Berlin, 1988, 127-138. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.