Semialgebraic and semianalytic sets
Cahiers du séminaire d'histoire des mathématiques (1991)
- Volume: 1, page 59-70
- ISSN: 0767-7421
Access Full Article
topHow to cite
topRuiz, Jesus M.. "Semialgebraic and semianalytic sets." Cahiers du séminaire d'histoire des mathématiques 1 (1991): 59-70. <http://eudml.org/doc/91024>.
@article{Ruiz1991,
author = {Ruiz, Jesus M.},
journal = {Cahiers du séminaire d'histoire des mathématiques},
keywords = {semi-algebraic set; semi-analytic set},
language = {eng},
pages = {59-70},
publisher = {Institut Henri Poincaré, Séminaire d'histoire des mathématiques : Paris},
title = {Semialgebraic and semianalytic sets},
url = {http://eudml.org/doc/91024},
volume = {1},
year = {1991},
}
TY - JOUR
AU - Ruiz, Jesus M.
TI - Semialgebraic and semianalytic sets
JO - Cahiers du séminaire d'histoire des mathématiques
PY - 1991
PB - Institut Henri Poincaré, Séminaire d'histoire des mathématiques : Paris
VL - 1
SP - 59
EP - 70
LA - eng
KW - semi-algebraic set; semi-analytic set
UR - http://eudml.org/doc/91024
ER -
References
top- [L] Lojasiewicz S. : Ensembles semianalytiques, I.H.E.S. (prépublication) ( 1964). Much more recent is the book
- [B C R] Bochnak J., Coste M., Roy M.-F.: Géométrie algébrique réelle. Berlin, Heidelberg, New York, Springer ( 1987). The first bounds on the number of inequalities needed to describe a semialgebraic set appeared in Zbl0633.14016MR949442
- [B1] Bröcker L.: Minimale Erzeugung von Positivbereich. Geom. Dedicate 16, 335-350 ( 1984). Finally the sharpest estimations were obtained in Zbl0546.14016MR765338
- [S] Scheiderer C. : Stability index of real varieties. Invent. Math. 97, 467-483 ( 1989). For more information on the semialgebraic case, an excellent reference is the recent survey Zbl0715.14049MR1005003
- [B2] Bröcker L. : On basic semialgebraic sets. To apperar in Geom. Dedicata. Concerning the semianalytic case, Lojasiewicz's Lecture Notes quoted above is again the classical reference for local results. The global ones have appeared in the following papers
- [R1] Ruiz J. : On Hilbert's 17th problem an real Nullstellensatz for global analytic functions. Math. Z. 190, 447-459 ( 1985). Zbl0579.14021MR806902
- [A B R 1] Andradas C., Bröcker L., Ruiz R. : Minimal generation of basic open semianalytic sets. Invent. Math. 92, 409-430 ( 1988), Zbl0655.32011MR936090
- [R 2] Ruiz J. : On the connected components of a global semianalytic set. Journal Reine Angew. Math. 392, 137-144 ( 1988). Zbl0645.32004MR965061
- [R 3] Ruiz J. : On the topology of global semianalytic sets. In Real analytic and algebraic geometry, Proc. Trento 1988, M. Galbiati, A. Tognoli (Eds.) Springer-Verlag LNM 1420, 237-246. Finally, there is an abstract theory of real constructible sets that generalizes both the algebraic and the analytic cases. A symmetric presentation of it is the subject of the forthcoming book. Zbl0723.14041MR1051217
- [A B R 2] Andradas C., Bröcker L., Ruiz J., Real constructible sets.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.