Sheaves and concepts : a model-theoretic interpretation of Grothendieck topoi

Gonzalo E. Reyes

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1977)

  • Volume: 18, Issue: 2, page 105-137
  • ISSN: 1245-530X

How to cite

top

Reyes, Gonzalo E.. "Sheaves and concepts : a model-theoretic interpretation of Grothendieck topoi." Cahiers de Topologie et Géométrie Différentielle Catégoriques 18.2 (1977): 105-137. <http://eudml.org/doc/91182>.

@article{Reyes1977,
author = {Reyes, Gonzalo E.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {Coherent Logic; Model Theory; Concepts; Site; Sheaves; Grothendieck Topoi; Coherent Geometric Morphism},
language = {eng},
number = {2},
pages = {105-137},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Sheaves and concepts : a model-theoretic interpretation of Grothendieck topoi},
url = {http://eudml.org/doc/91182},
volume = {18},
year = {1977},
}

TY - JOUR
AU - Reyes, Gonzalo E.
TI - Sheaves and concepts : a model-theoretic interpretation of Grothendieck topoi
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1977
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 18
IS - 2
SP - 105
EP - 137
LA - eng
KW - Coherent Logic; Model Theory; Concepts; Site; Sheaves; Grothendieck Topoi; Coherent Geometric Morphism
UR - http://eudml.org/doc/91182
ER -

References

top
  1. A.W. Antonius, Théories cohérentes et prétopos, Thèse de Maitrise, Univ. de Montréal, 1975. 
  2. Ba M.BARR, Toposes without points, J. Pure and Applied Algebra5 (1974), 265. Zbl0294.18009MR409602
  3. BW J. Barwise, Admissible sets, North Holland, 1976. 
  4. Be J. Benabou, Structures syntaxiques, Notes written by R. Ouellet, 1973. 
  5. Bo A. Boileau, Types vs topos, mimeog., Univ. de Montréal, 1975. 
  6. CK C.C. Chang and H.J. Keisler, Model Theory, North Holland, 1973. Zbl0697.03022
  7. D J. Dionne, Des théories élémentaires aux catégories conceptuelles, Thèse de Maitrise, Univ. de Montréal, 1973. 
  8. F S. Feferman, Lectures on proof theory, Lecture Notes in Math.70, Springer (1967). Zbl0248.02033MR235996
  9. GU P. Gabriel and F. Ulmer, Lokal prasentierbare Kategorien, Lecture Notes in Math.221, Springer (1971). Zbl0225.18004MR327863
  10. GD A. Grothendieck and J. Dieudonne, Eléments de Géométrie Algébrique, Inst. H. E. S., Bures sur Yvette, 4, 8, 17, 20, 24, 28, 32 (1960 à 1967). 
  11. HA M. Hakim, Topos annelés et Schémas relatifs, Springer, 1972. Zbl0246.14004MR364245
  12. Hi D. Higgs, A category approach to boolean-valued Set Theory, to appear. 
  13. K H.J. Keisler, Theory of models with generalized atomic formulas, J. Symbolic Logic25 (1960), 1-26. Zbl0107.00803MR130169
  14. L F.W. Lawvere, Continuously variable sets: Algebraic Geometry =Geometric Logic, Proc. of the Logic Coll., Bristol, 1973. Zbl0364.18002
  15. MR M. Makkai and G.E. Reyes, Model theoretic methods in the theory of topoi and related categories I, II, Bull. Acad. Pol. des Sciences24 (1976), 379-392. Zbl0337.18005MR422016
  16. M R. Mansfield, The completeness theorem for infinitary Logic, J. Symbolic Logic37 (1972), 31-34. Zbl0244.02005MR398773
  17. RS H. Rasiowa and R. Sikorski, The mathematics of metamathematics, PAN, Warsaw, 1963. Zbl0122.24311MR163850
  18. R G.E. Reyes, From sheaves to logic, Studies in Algebraic Logic, MMA Series 9 (1975). Zbl0344.02042MR360735
  19. Ro M.ROBITAILLE-GIGUERE, Modèles d'une catégorie logique dans un topos de préfaisceaux et d'ensembles de Heyting, Thèse de Maitrise, Université de Montréal, 1975. 
  20. SGA4 M. Artin, A. Grothendieck and J.L. Verdier, Théorie des topos et co-homologie étale des schémas, Lecture Notes in Math.269 and 270, Springer (1972). MR354653
  21. Co1 M. Coste, Logique d'ordre supérieur dans les topos élémentaires, Séminaire Bénabou, Paris (1974). 
  22. Co2 M.F. Coste and M. Coste, Théories cohérentes et topos cohérents, Séminaire Bénabou, Paris (1975). 
  23. Fo M. Fourman, Connections between category theory and logic, Doctoral Dissertation, Oxford, 1974. 
  24. Ko A.KOCK, Universal projective geometry via topos theory, J. Pure and Applied Algebra9 (1976), 1- 24. Zbl0375.02016MR430955
  25. L 1 F.W. Lawvere, Theories as categories and the completeness theorem, J. Symbolic Logic32 (1967), 562. 
  26. V H. Volger, Completeness of logical categories, Lecture Notes in Math.445, Springer (1975). Zbl0338.18001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.