Multiple functors. II. The monoidal closed category of multiple categories

Andrée Ehresmann; Charles Ehresmann

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1978)

  • Volume: 19, Issue: 3, page 295-333
  • ISSN: 1245-530X

How to cite

top

Ehresmann, Andrée, and Ehresmann, Charles. "Multiple functors. II. The monoidal closed category of multiple categories." Cahiers de Topologie et Géométrie Différentielle Catégoriques 19.3 (1978): 295-333. <http://eudml.org/doc/91205>.

@article{Ehresmann1978,
author = {Ehresmann, Andrée, Ehresmann, Charles},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {partially closed monoidal structure; tensor product; internal Hom- functor; existence of colimits; multiple functors; monoidal closed category of multiple categories; representable 2-category},
language = {eng},
number = {3},
pages = {295-333},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Multiple functors. II. The monoidal closed category of multiple categories},
url = {http://eudml.org/doc/91205},
volume = {19},
year = {1978},
}

TY - JOUR
AU - Ehresmann, Andrée
AU - Ehresmann, Charles
TI - Multiple functors. II. The monoidal closed category of multiple categories
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1978
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 19
IS - 3
SP - 295
EP - 333
LA - eng
KW - partially closed monoidal structure; tensor product; internal Hom- functor; existence of colimits; multiple functors; monoidal closed category of multiple categories; representable 2-category
UR - http://eudml.org/doc/91205
ER -

References

top
  1. 1 Appelgate and Tierney, Iterated cotriples, Lecture Notes in Math.137, Springer (1970), 56-99. Zbl0319.18004MR265429
  2. 2 J. Benabou, Introduction to bicategories, Lecture Notes in Math. 47 (1967). MR220789
  3. 3 D. Bourn, Natural anadeses and catadeses, Cahiers Topo. et Géo. Diff.XIV-4 (1973), 371-416. Zbl0323.18003MR354808
  4. 4 F. Conduche, Sur les structures définies par esquisses projectives, Esquisses Math.11 (1976). Zbl0373.18002
  5. 5 A. and C. Ehresmann, Multiple functors I, Cahiers Topo. et Géo. Diff.XV-3 (1974), 215-292. 
  6. 6 A. and C. Ehresmann, Sketched structures, Cahiers Topo. et Géo. Diff.XIII- 2 (1972), 105-214. 
  7. 7 C. Ehresmann, Catégories structurées I et II, Ann. Ec. Norm. Sup.80, Paris (1963), 349- 426. Zbl0128.02002MR197529
  8. 8 C. Ehresmann, Catégories structurées III, Topo. et Géo. Diff.V (1963). Zbl0207.32502MR197529
  9. 9 C. Ehresmann, Structures quasi-quotients, Math. Ann.171 (1967), 293- 363. Zbl0248.18007MR212066
  10. 10 Eilenberg and Kelly, Closed categories, Proc. Conf. on Categ. Algebra, La Jolla (1965), Springer, 1966. Zbl0192.10604MR225841
  11. 11 Gabriel and Zisman, Calculus of fractions and homotopy Theory, Springer, 1966. Zbl0186.56802
  12. 12 J.W. Gray, Formal category theory, Lecture Notes in Math.391 (1974). Zbl0285.18006
  13. 13 J.W. Gray, Notes taken by Leroux at Gray's Lectures, Paris1971; summary in The Midwest Cat. Sem. in Zürich, Lecture Notes in Math.195 (1971). 
  14. 14 C.L. Air, Etude générale de la catégorie des esquisses, Esquisses Math.23 (1975). Zbl0397.18007
  15. 15 C.B. Spencer, An abstract setting for homotopy pushouts and pullbacks, Cahiers Topo. et Géo. Diff.XVIII- 4 (1977), 409-430. Zbl0378.18008MR486054

NotesEmbed ?

top

You must be logged in to post comments.