Exponential laws for topological categories, groupoids and groups, and mapping spaces of colimits

Ronald Brown; Peter Nickolas

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1979)

  • Volume: 20, Issue: 2, page 179-198
  • ISSN: 1245-530X

How to cite

top

Brown, Ronald, and Nickolas, Peter. "Exponential laws for topological categories, groupoids and groups, and mapping spaces of colimits." Cahiers de Topologie et Géométrie Différentielle Catégoriques 20.2 (1979): 179-198. <http://eudml.org/doc/91213>.

@article{Brown1979,
author = {Brown, Ronald, Nickolas, Peter},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {colimits of topological groups; k-omega spaces; topological groupoids; free topological group; compact-open topology; universal topological group; exponential law; double categories},
language = {eng},
number = {2},
pages = {179-198},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Exponential laws for topological categories, groupoids and groups, and mapping spaces of colimits},
url = {http://eudml.org/doc/91213},
volume = {20},
year = {1979},
}

TY - JOUR
AU - Brown, Ronald
AU - Nickolas, Peter
TI - Exponential laws for topological categories, groupoids and groups, and mapping spaces of colimits
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1979
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 20
IS - 2
SP - 179
EP - 198
LA - eng
KW - colimits of topological groups; k-omega spaces; topological groupoids; free topological group; compact-open topology; universal topological group; exponential law; double categories
UR - http://eudml.org/doc/91213
ER -

References

top
  1. 1 Barratt, M.G., Track groups II, Proc. London Math. Soc. (3) 5 (1955), 285-329. Zbl0065.16302MR73179
  2. 2 Bastiani-Ehresmann, A. and Ehresmann, C., Catégories de foncteurs structurés, Cahiers Topo. et Géo. Diff.XI (1969), 329-384. Zbl0223.18008MR272850
  3. 3 Brown, R., Elements of modem Topology, McGraw Hill (Maidenhead), 1968. Zbl0159.52201MR227979
  4. 4 Brown, R., Function spaces and product topologies, Quart. J. Math. Oxford ( 2) 15(1964), 238- 250. Zbl0126.38503MR165497
  5. 5 Brown, R. and Hardy, J.P.L., Subgroups of free topological groups and free products of topological groups, J. London Math. Soc. ( 2) 10 (1975), 431-440. Zbl0304.22003MR382535
  6. 6 Brown, R. and Hardy, J.P.L., Topological groupoids I: Universal morphisms, Math. Nachr.71 (1976), 273- 286; with Danesh- Naruie, G., Topological groupoids II: Covering morphisms and G-spaces, ibid.74 (1976), 143-156. Zbl0281.22002MR412333
  7. 7 Graev, M.I., Free topological groups, A. M. S. Transl.35 (1951); Reprint: ibid. (1) 8(1962), 305-364. MR38357
  8. 8 Huber, P.J., Homotopical cohomology and Cech cohomology, Math. Ann.144 (1961), 73-76. Zbl0096.37504MR133821
  9. 9 Kaplan, S., Extensions of the Pontrjagin duality I: Infinite products, Duke Math. J.15 (1948), 649-658. Zbl0034.30601MR26999
  10. 10 L A Martin, W.F., On the foundations of k-group theory, Preprint, Louisiana State University. 
  11. 11 L A Martin, W.F., Pontrjagin duality for k-groups, Preprint, Louisiana Ste. University. 
  12. 12 Mack, J., Morris, S.A. and Ordmann, E.T., Free topological groups and the projective dimension of a locally compact abelian group, Proc. A. M. S.40 (1973), 303-308. Zbl0263.22001MR320216
  13. 13 Maclane, S., Categories for the working mathematician, Springer, 1971. Zbl0705.18001MR354798
  14. 14 Markov, A.A., On free topological groups, A.M.S. Transl.30 (1950), 11-88; Reprint: ibid. (1)8(1962), 195- 272. MR37854
  15. 15 Yang, J.S., On isomorphic groups and homeomorphic spaces, Proc. A. M. S., 43 (1974), 431- 438; Erratum, ibid.48 (1975), 517. Zbl0284.54006MR339060

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.