The tower and regular decomposition

John L. MacDonald; Arthur Stone

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1982)

  • Volume: 23, Issue: 2, page 197-213
  • ISSN: 1245-530X

How to cite

top

MacDonald, John L., and Stone, Arthur. "The tower and regular decomposition." Cahiers de Topologie et Géométrie Différentielle Catégoriques 23.2 (1982): 197-213. <http://eudml.org/doc/91298>.

@article{MacDonald1982,
author = {MacDonald, John L., Stone, Arthur},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {transfinitely iterated construction of codominions; adjoint tower},
language = {eng},
number = {2},
pages = {197-213},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {The tower and regular decomposition},
url = {http://eudml.org/doc/91298},
volume = {23},
year = {1982},
}

TY - JOUR
AU - MacDonald, John L.
AU - Stone, Arthur
TI - The tower and regular decomposition
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1982
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 23
IS - 2
SP - 197
EP - 213
LA - eng
KW - transfinitely iterated construction of codominions; adjoint tower
UR - http://eudml.org/doc/91298
ER -

References

top
  1. 1 H. Applegate & M. Tierney, Categories with models, Lecture Notes in Math.80, Springer (1969), 156-244. Zbl0188.28204MR242916
  2. 2 H. Applegate & M. Tierney, Iterated cotriples, Lecture Notes in Math.137Springer (1970), 56-99. Zbl0319.18004MR265429
  3. 3 M. Barr, The point of the empty set, Cahiers Top. et Géo. Diff.XIII-1 (1972), 357-368. Zbl0258.18003MR323861
  4. 4 J. Beck, Distributive laws, Lecture Notes in Math.80, Springer (1969), 119-140. Zbl0186.02902MR241502
  5. 5 B. Day, On adjoint-functor factorization, Lecture Notes in Math.420, Springer (1974), 1-19. Zbl0367.18004MR396717
  6. 6 P. Freyd, Aspects of topoi, Bull. Austral. Math. Soc.7 (1972), 1-76. Zbl0252.18001MR396714
  7. 7 P. F Reyd & M. Kelly, Categories of continuous functors, I, J. Pure & App. Algebra2(1972), 169 - 191. Zbl0257.18005MR322004
  8. 8 P. Gabriel & G. Ulmer, Lokal präsentierbare Kategorien, Lecture Notes in Math.221, Springer (1971). Zbl0225.18004MR327863
  9. 9 J. Gray, Formal category theory: Adjointness for 2-categories, Lecture Notes in Math.391, Springer (1974). Zbl0285.18006MR371990
  10. 10 S. Hayden & J. Kennison, Zermelo-Fraenkel set theory, Merrill Press1968. Zbl0179.01501MR233704
  11. 11 H. Herrlich& G. Strecker, Category theory, Heldermann, 1979. Zbl0437.18001MR571016
  12. 12 J. Isbell, General functorial semantics, I, Amer. J. Math.94 (1972), 535-596. Zbl0439.18009MR396718
  13. 13 J. Isbell, Structure of categories, Bull. A.M.S.72 (1966), 619-655. Zbl0142.25401MR206071
  14. 14 M. Kelly, Monomorphisms, epimorphsims and pullbacks, J. Austral. Math. Soc.9 (1969), 124-142. Zbl0169.32604MR240161
  15. 15 J. Macdonald, Cohomology operations in a category, J. Pure & App. Alg.19 (1980), 275-297. Zbl0482.55018MR593257
  16. 16 S. Maclane, Categories for the working mathematician, Springer, 1971. Zbl0705.18001MR354798
  17. 17 J. Monk, Mathematical Logic, Springer, 1976. Zbl0354.02002MR465767
  18. 18 H. Schubert, Categories, Springer, 1972. Zbl0253.18002MR349793
  19. 19 A. Stone, The heights of adjoint towers, A.M.S. Notices21 (1974), A -81. 
  20. 20 R. Street, Cosmoi of internal categories, Trans. A.M.S.258 (1980), 271-318. Zbl0393.18009MR558176
  21. 21 F. Ulmer, Locally α-presentable and locally α-generated categories, Lecture Notes in Math.195, Springer (1971), 230 - 247. Zbl0225.18005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.