Making factorizations compositive
Commentationes Mathematicae Universitatis Carolinae (1991)
- Volume: 32, Issue: 4, page 749-759
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBörger, Reinhard. "Making factorizations compositive." Commentationes Mathematicae Universitatis Carolinae 32.4 (1991): 749-759. <http://eudml.org/doc/247310>.
@article{Börger1991,
abstract = {The main aim of this paper is to obtain compositive cone factorizations from non-compositive ones by itereration. This is possible if and only if certain colimits of (possibly large) chains exist. In particular, we show that (strong-epi, mono) factorizations of cones exist if and only if joint coequalizers and colimits of chains of regular epimorphisms exist.},
author = {Börger, Reinhard},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {(locally) orthogonal $\mathcal \{E\}$-factorization; (local) factorization class; colimit of a chain; cointersection; regular epimorphism; joint coequalizer; (familially) strong epimorphism; decomposition number; orthogonal -factorization; decomposition number; cointersection; compositive cone factorizations; joint coequalizers; colimits of chains; regular epimorphisms},
language = {eng},
number = {4},
pages = {749-759},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Making factorizations compositive},
url = {http://eudml.org/doc/247310},
volume = {32},
year = {1991},
}
TY - JOUR
AU - Börger, Reinhard
TI - Making factorizations compositive
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1991
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 32
IS - 4
SP - 749
EP - 759
AB - The main aim of this paper is to obtain compositive cone factorizations from non-compositive ones by itereration. This is possible if and only if certain colimits of (possibly large) chains exist. In particular, we show that (strong-epi, mono) factorizations of cones exist if and only if joint coequalizers and colimits of chains of regular epimorphisms exist.
LA - eng
KW - (locally) orthogonal $\mathcal {E}$-factorization; (local) factorization class; colimit of a chain; cointersection; regular epimorphism; joint coequalizer; (familially) strong epimorphism; decomposition number; orthogonal -factorization; decomposition number; cointersection; compositive cone factorizations; joint coequalizers; colimits of chains; regular epimorphisms
UR - http://eudml.org/doc/247310
ER -
References
top- BörgerR., Kategorielle Beschreibungen von Zusammenhangsbegriffen, Doctoral Dissertation, Fernuniversität Hagen, 1981. Zbl0478.18003
- BörgerR., Tholen W., Concordant-dissonant and monotone-light, Proceedings of the International Conference on Categorical Topology, Toledo (Ohio), 1983 Sigma Series in Pure Mathematics 5 (1984), 90-107. (1984) Zbl0549.18003MR0785013
- BörgerR., Tholen W., Total categories and solid functors,, Can. J. Math. 42 (1990), 213-229. (1990) Zbl0742.18001MR1051726
- BörgerR., Tholen W., Strong, regular, and dense generators, Cahiers Topologie Géom. Différentielle Catégoriques, to appear. Zbl0758.18001
- Ehrbar H., Wyler O., Images in categories as reflections,, Cahiers Topologie Géom. Différentielle Catégoriques 28 (1987), 143-158. (1987) Zbl0632.18001MR0913969
- Freyd P., Kelly G.M., Categories of continuous functors I, J. Pure Appl. Algebra 2 (1972), 169-191. (1972) Zbl0257.18005MR0322004
- Gabriel P., Ulmer F., Lokal präsentierbare Kategorien, Lecture Notes in Mathematics 221, Springer, Berlin, 1971. Zbl0225.18004MR0327863
- Herrlich H., Salicrup G., Vazquez R., Dispersed factorization structures, Can. J. Math. 31 (1979), 1059-1071. (1979) Zbl0435.18003MR0546958
- Herrlich H., Salicrup G., Vazquez R., Light factorization structures, Quaest. Math. 3 (1979), 181-213. (1979) Zbl0407.54006MR0533531
- Isbell J.R., Epimorphisms and dominions, Proceedings of the Conference on Categorical Algebra, La Jolla 1965, Springer, Berlin (1966), 232-246. Zbl0287.08007MR0209202
- Isbell J.R., Structure of categories, Bull. Amer. Math. Soc. 72 (1966), 619-655. (1966) Zbl0142.25401MR0206071
- Kelly G.M., Monomorphisms, epimorphisms, and pullbacks, J. Austral. Math. Soc. A9 (1969), 124-142. (1969) MR0240161
- Kunen K., Set theory, Studies in Logic and the Foundation of Mathematics 102, North-Holland, Amsterdam, 1980. Zbl0960.03033MR0597342
- Melton A., Strecker G.E., On the structure of factorization structures, Lecture Notes in Mathematics 962, Springer, Berlin (1982), 197-208. Zbl0502.18001MR0682957
- MacDonald J., Stone A., The tower and regular decomposition, Cahiers Topologie Géom. Différentielle Categoriques 23 (1982), 197-213. (1982) Zbl0491.18002MR0667399
- MacDonald J., Tholen W., Decomposition of morphisms into infinetely many factors, Lecture Notes in Mathematics 962, Springer, Berlin (1982), 175-189. MR0682955
- Preuß G., -zusammenhängende Räume, Manuscripta Math. 3 (1970), 331-342. (1970) MR0282323
- Street R., The familial approach to total completeness and toposes, Trans. Amer. Math. Soc. 284 (1984), 355-369. (1984) MR0742429
- Street R., Walters R., Yoneda structures on 2-categories, J. Algebra 50 (1978), 350-379. (1978) Zbl0401.18004MR0463261
- Tholen W., Bildzerlegungen und algebraische Kategorien, Doctoral Dissertation, Universität Münster, 1974.
- Tholen W., Factorizations, localizations and the orthogonal subcategory problem, Math. Nachr. 114 (1983), 63-85. (1983) Zbl0553.18003MR0745048
- Tholen W., MacNeille completions of categories with local properties, Comment. Math. Univ. St. Pauli 28 (1979), 179-202. (1979) MR0578672
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.