Making factorizations compositive

Reinhard Börger

Commentationes Mathematicae Universitatis Carolinae (1991)

  • Volume: 32, Issue: 4, page 749-759
  • ISSN: 0010-2628

Abstract

top
The main aim of this paper is to obtain compositive cone factorizations from non-compositive ones by itereration. This is possible if and only if certain colimits of (possibly large) chains exist. In particular, we show that (strong-epi, mono) factorizations of cones exist if and only if joint coequalizers and colimits of chains of regular epimorphisms exist.

How to cite

top

Börger, Reinhard. "Making factorizations compositive." Commentationes Mathematicae Universitatis Carolinae 32.4 (1991): 749-759. <http://eudml.org/doc/247310>.

@article{Börger1991,
abstract = {The main aim of this paper is to obtain compositive cone factorizations from non-compositive ones by itereration. This is possible if and only if certain colimits of (possibly large) chains exist. In particular, we show that (strong-epi, mono) factorizations of cones exist if and only if joint coequalizers and colimits of chains of regular epimorphisms exist.},
author = {Börger, Reinhard},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {(locally) orthogonal $\mathcal \{E\}$-factorization; (local) factorization class; colimit of a chain; cointersection; regular epimorphism; joint coequalizer; (familially) strong epimorphism; decomposition number; orthogonal -factorization; decomposition number; cointersection; compositive cone factorizations; joint coequalizers; colimits of chains; regular epimorphisms},
language = {eng},
number = {4},
pages = {749-759},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Making factorizations compositive},
url = {http://eudml.org/doc/247310},
volume = {32},
year = {1991},
}

TY - JOUR
AU - Börger, Reinhard
TI - Making factorizations compositive
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1991
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 32
IS - 4
SP - 749
EP - 759
AB - The main aim of this paper is to obtain compositive cone factorizations from non-compositive ones by itereration. This is possible if and only if certain colimits of (possibly large) chains exist. In particular, we show that (strong-epi, mono) factorizations of cones exist if and only if joint coequalizers and colimits of chains of regular epimorphisms exist.
LA - eng
KW - (locally) orthogonal $\mathcal {E}$-factorization; (local) factorization class; colimit of a chain; cointersection; regular epimorphism; joint coequalizer; (familially) strong epimorphism; decomposition number; orthogonal -factorization; decomposition number; cointersection; compositive cone factorizations; joint coequalizers; colimits of chains; regular epimorphisms
UR - http://eudml.org/doc/247310
ER -

References

top
  1. BörgerR., Kategorielle Beschreibungen von Zusammenhangsbegriffen, Doctoral Dissertation, Fernuniversität Hagen, 1981. Zbl0478.18003
  2. BörgerR., Tholen W., Concordant-dissonant and monotone-light, Proceedings of the International Conference on Categorical Topology, Toledo (Ohio), 1983 Sigma Series in Pure Mathematics 5 (1984), 90-107. (1984) Zbl0549.18003MR0785013
  3. BörgerR., Tholen W., Total categories and solid functors,, Can. J. Math. 42 (1990), 213-229. (1990) Zbl0742.18001MR1051726
  4. BörgerR., Tholen W., Strong, regular, and dense generators, Cahiers Topologie Géom. Différentielle Catégoriques, to appear. Zbl0758.18001
  5. Ehrbar H., Wyler O., Images in categories as reflections,, Cahiers Topologie Géom. Différentielle Catégoriques 28 (1987), 143-158. (1987) Zbl0632.18001MR0913969
  6. Freyd P., Kelly G.M., Categories of continuous functors I, J. Pure Appl. Algebra 2 (1972), 169-191. (1972) Zbl0257.18005MR0322004
  7. Gabriel P., Ulmer F., Lokal präsentierbare Kategorien, Lecture Notes in Mathematics 221, Springer, Berlin, 1971. Zbl0225.18004MR0327863
  8. Herrlich H., Salicrup G., Vazquez R., Dispersed factorization structures, Can. J. Math. 31 (1979), 1059-1071. (1979) Zbl0435.18003MR0546958
  9. Herrlich H., Salicrup G., Vazquez R., Light factorization structures, Quaest. Math. 3 (1979), 181-213. (1979) Zbl0407.54006MR0533531
  10. Isbell J.R., Epimorphisms and dominions, Proceedings of the Conference on Categorical Algebra, La Jolla 1965, Springer, Berlin (1966), 232-246. Zbl0287.08007MR0209202
  11. Isbell J.R., Structure of categories, Bull. Amer. Math. Soc. 72 (1966), 619-655. (1966) Zbl0142.25401MR0206071
  12. Kelly G.M., Monomorphisms, epimorphisms, and pullbacks, J. Austral. Math. Soc. A9 (1969), 124-142. (1969) MR0240161
  13. Kunen K., Set theory, Studies in Logic and the Foundation of Mathematics 102, North-Holland, Amsterdam, 1980. Zbl0960.03033MR0597342
  14. Melton A., Strecker G.E., On the structure of factorization structures, Lecture Notes in Mathematics 962, Springer, Berlin (1982), 197-208. Zbl0502.18001MR0682957
  15. MacDonald J., Stone A., The tower and regular decomposition, Cahiers Topologie Géom. Différentielle Categoriques 23 (1982), 197-213. (1982) Zbl0491.18002MR0667399
  16. MacDonald J., Tholen W., Decomposition of morphisms into infinetely many factors, Lecture Notes in Mathematics 962, Springer, Berlin (1982), 175-189. MR0682955
  17. Preuß G., -zusammenhängende Räume, Manuscripta Math. 3 (1970), 331-342. (1970) MR0282323
  18. Street R., The familial approach to total completeness and toposes, Trans. Amer. Math. Soc. 284 (1984), 355-369. (1984) MR0742429
  19. Street R., Walters R., Yoneda structures on 2-categories, J. Algebra 50 (1978), 350-379. (1978) Zbl0401.18004MR0463261
  20. Tholen W., Bildzerlegungen und algebraische Kategorien, Doctoral Dissertation, Universität Münster, 1974. 
  21. Tholen W., Factorizations, localizations and the orthogonal subcategory problem, Math. Nachr. 114 (1983), 63-85. (1983) Zbl0553.18003MR0745048
  22. Tholen W., MacNeille completions of categories with local properties, Comment. Math. Univ. St. Pauli 28 (1979), 179-202. (1979) MR0578672

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.