On the structure of locally finite pure semisimple Grothendieck categories

Daniel Simson

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1982)

  • Volume: 23, Issue: 4, page 397-406
  • ISSN: 1245-530X

How to cite

top

Simson, Daniel. "On the structure of locally finite pure semisimple Grothendieck categories." Cahiers de Topologie et Géométrie Différentielle Catégoriques 23.4 (1982): 397-406. <http://eudml.org/doc/91311>.

@article{Simson1982,
author = {Simson, Daniel},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {Grothendieck category; pure semisimple category; pseudocompact rings; pseudocompact modules; Artin algebra; finite representation type; coalgebra},
language = {eng},
number = {4},
pages = {397-406},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {On the structure of locally finite pure semisimple Grothendieck categories},
url = {http://eudml.org/doc/91311},
volume = {23},
year = {1982},
}

TY - JOUR
AU - Simson, Daniel
TI - On the structure of locally finite pure semisimple Grothendieck categories
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1982
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 23
IS - 4
SP - 397
EP - 406
LA - eng
KW - Grothendieck category; pure semisimple category; pseudocompact rings; pseudocompact modules; Artin algebra; finite representation type; coalgebra
UR - http://eudml.org/doc/91311
ER -

References

top
  1. 1 M. Auslander, Large modules over Artin algebras, Algebra, Topology and Category Theory, A collection of papers in honor of S. Eilenberg, Academic Press, 1976, 1-17. Zbl0442.16025MR424874
  2. 2 G. Drozdowski& D. Simson, Quivers of pure semisimple type, Bull. Acad. Polon. Sci., Sér. Sc. Math. Astron. Phys. 27 (1979), 33-40. Zbl0449.18002MR539329
  3. 3 P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France90 (1962), 323-448. Zbl0201.35602MR232821
  4. 4 Z. Leszczynski & D. Simson, Note on pure semisimple Grothendieck categories and the exchange property, Bull. Acad. Polon. Sci., Sér. Sc. Math. Astron., Phys.27 (1979), 41-46. Zbl0408.18007MR539330
  5. 5 N. Popescu, Abelian categories with applications to rings and modules, Acad. P ress, 1973. Zbl0271.18006MR340375
  6. 6 C.M. Ringel, Representations of K-species and bimodules, J. Algebra41 (1976), 269-302. Zbl0338.16011MR422350
  7. 7 D. Simson, On pure global dimension of locally finitely presented Grothendieck categorie s, Fund. Math.96 (1977), 91- 116. Zbl0361.18010MR480690
  8. 8 D. Simson, On pure semisimple Grothendieck categories I, Fund. Math.100 (1978), 211- 222. Zbl0392.18012MR509547
  9. 9 D. Simson, On pure semisimple Grothendieck categories II, Id.110 (1980), 107. Zbl0393.18011MR600584
  10. 10 D. Simson, Categories of representations of species, J. Pure & Appl. Algebra14 (1979), 101-114. Zbl0396.18004MR515489
  11. 11 D. Simson, On the structure of pure semisimple Grothendieck categories, Proc. Conf. Darstellungstheorie Endlich dimensionaler Algebren, Oberwolfach1977. Zbl0361.18010
  12. 12 M.A. Sweedler, Hopf algebras, Benjamin, New York, 1969. Zbl0194.32901MR252485
  13. 13 L. Witkowski, On coalgebras and linearly topological rings, Colloq. Math.401979), 207-218. Zbl0418.16022MR547861

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.