Manifolds of smooth maps IV : theorem of De Rham

P. Michor

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1983)

  • Volume: 24, Issue: 1, page 57-86
  • ISSN: 1245-530X

How to cite

top

Michor, P.. "Manifolds of smooth maps IV : theorem of De Rham." Cahiers de Topologie et Géométrie Différentielle Catégoriques 24.1 (1983): 57-86. <http://eudml.org/doc/91318>.

@article{Michor1983,
author = {Michor, P.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {locally convex vector space; Gel'fand-Fuks cohomology; NLF-manifolds; sheaf-cohomology},
language = {eng},
number = {1},
pages = {57-86},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Manifolds of smooth maps IV : theorem of De Rham},
url = {http://eudml.org/doc/91318},
volume = {24},
year = {1983},
}

TY - JOUR
AU - Michor, P.
TI - Manifolds of smooth maps IV : theorem of De Rham
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1983
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 24
IS - 1
SP - 57
EP - 86
LA - eng
KW - locally convex vector space; Gel'fand-Fuks cohomology; NLF-manifolds; sheaf-cohomology
UR - http://eudml.org/doc/91318
ER -

References

top
  1. 1 D. Burghelea, The rational homotopy groups of Diff(M) and Homeo (M) in the stability range, Lecture Notes in Math.763, Springer (1979), 604 -626. Zbl0421.58008MR561241
  2. 2 J. Dieudonne, Foundations of modern Analysis, I, Academic Press1969. Zbl0176.00502MR349288
  3. 3 E. Dubinsky, The structure of nuclear Fréchet spaces, Lecture Notes in Math.720, Springer (1979). Zbl0403.46005MR537039
  4. 4 D.B.A. Epstein,The simplicity of certain groups of homeomorphisms, Comp. Math.22(1970), 165 -173. Zbl0205.28201MR267589
  5. 5 I.M. G El' Fand & D.B. Fuks, Cohomology of the Lie algebra of tangent vector fields of a smooth manifold, Funct, Anal. Appl.: I: 3 (1969), 194; II: 4 (1970). Zbl0216.20301
  6. 6 R. Godement, Topologie a lgebriq ue et théorie des faisceaux, Hermann. Zbl0080.16201
  7. 7 W. Greub, S. Halperin & R. VanstoneConnections, Curvature, Cohomology I, II, III, Academic Press1972, 1973, 1976. MR400275
  8. 8 A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. A.M. S .16 (1955). Zbl0064.35501MR75539
  9. 9 H.H. Keller, Differential calculus in locally convex spaces, Lecture Notes in Math.417, Springer (1974). Zbl0293.58001MR440592
  10. 10 J. Mather, Commutators of diffeomoiphisms, Comm. Math. Helv., I: 49 (1974), 512-528; II: 50 (1975), 15 -26. Zbl0289.57014MR356129
  11. 11 D. Mcduff, The homology of some groups of diffeomorphisms, Comm. Math. Helv.55 (1980), 97-129. Zbl0448.57015MR569248
  12. 12 E. Michael, Locally multiplicatively convex algebras, Mem. AMS11 (1952). Zbl0047.35502MR51444
  13. 13 P. Michor, Manifolds of smooth maps, Cahiers Top. et Geom. Diff.; I: XIX (1978), 47-78; II: XXI (1980), 63-86; III: Id. 325-337. Zbl0382.58009MR496542
  14. 14 P. Michor, Manifolds of differentiable mappings, Shiva Math. Ser.3, Orpington, Kent, 1980. Zbl0433.58001MR583436
  15. 15 H. Omori, On the group of diffeomorphisms of a compact manifold, Proc. Symp. Pure Math.XV., A. M. S. 1970, 167 -183. Zbl0214.48805MR271983
  16. 16 J. Palais& S. Smale, Structural stability theorems, Proc. Symp. Pure Ma th. XIV, A. M. S.1970, 223 -231. Zbl0214.50702MR267603
  17. 17 N. Papaghiuc, Sur les formes différentielles dans les espaces localement convexes, le lemme de Pioncaré, Anal. Stiint. Iasi23 (1977). Zbl0374.58001MR494190
  18. 18 A. Pietsch, Nukleare lokalkonvexe Raume, Berlin1955. Zbl0184.14602
  19. 19 H.H. Schafer, Topological vector spaces, Springer GTM 3, 1971. Zbl0217.16002
  20. 20 U. Seip, A convenient setting for differential calculus, J. PureAppl. Algebra14 (1979), 73-100. Zbl0397.58014MR515488
  21. 21 S. Smale, Diffeomorphisms of the 2-sphere, P roc. AMS10 (1959), 621-626. Zbl0118.39103MR112149
  22. 22 W. Thurston, Foliations and groups of diffeomorphisms BullAMS80 (1974). Zbl0295.57014MR339267
  23. 23 M. Va Idivia, The space of distributions D' (Ω) is not Br-complete, Math. Ann.211 (1974), 145-149. Zbl0288.46033

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.