Shape theory in a bicategory

Renato Betti

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1984)

  • Volume: 25, Issue: 1, page 41-49
  • ISSN: 1245-530X

How to cite

top

Betti, Renato. "Shape theory in a bicategory." Cahiers de Topologie et Géométrie Différentielle Catégoriques 25.1 (1984): 41-49. <http://eudml.org/doc/91341>.

@article{Betti1984,
author = {Betti, Renato},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {categorical shape theory; bicategory; Kleisli construction; bimodule calculus; shape invariant; Čech-condition; collage; cosmos; enriched categories},
language = {eng},
number = {1},
pages = {41-49},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Shape theory in a bicategory},
url = {http://eudml.org/doc/91341},
volume = {25},
year = {1984},
}

TY - JOUR
AU - Betti, Renato
TI - Shape theory in a bicategory
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1984
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 25
IS - 1
SP - 41
EP - 49
LA - eng
KW - categorical shape theory; bicategory; Kleisli construction; bimodule calculus; shape invariant; Čech-condition; collage; cosmos; enriched categories
UR - http://eudml.org/doc/91341
ER -

References

top
  1. 1 J. Benabou, Les distributeurs, Rapport 33 Inst. Math. Pure App. Univ.Louvain-la-Neuve (1973). 
  2. 2 R. Betti, Alcune proprietà delle categorie basate su una bicategoria, Quad. 28/S(II), Ist. Mat. Univ. di Milano (1982). 
  3. 3 R. Betti, A. Carboni, R. Street& R. Walters, Variation through enrichment, J.Pure App. Algebra29 (1983), 109-127. Zbl0571.18004MR707614
  4. 4 F. Borceux& G.M. Kelly, A notion of limit for enriched categories, Bull. Austral. Math. Soc.12 (1975), 49-72. Zbl0329.18011MR369477
  5. 5 D. Bourn & J.-M. Cordier, Distributeurs et théorie de la forme, Cahiers Top. et Géom. Diff. XXI-2 (1980), 161- 189. Zbl0439.55014MR574663
  6. 6 J.-M. Cordier& T. Porter, Functors between shape categories, J. Pure Ap. Algebra27 (1983), 1- 13. Zbl0511.18013MR680880
  7. 7 A. Deleanu& P. Hilton, Borsuk shape and a generalization of Grothendieck definition of pro-category, Math. Proc. Camb. Phil. Soc.79 (1976), 473. Zbl0327.18004MR400220
  8. 8 A. Deleanu& P. Hilton, On the categorical shape of a functor, Fund. Math.XCVII (1977), 157- 176. Zbl0368.18002MR645375
  9. 9 A. Frei, On categorical shape theory, Cahiers Top. et Géom. Diff.XVII- 3 (1976), 261-294. Zbl0341.55015MR439911
  10. 10 A. Frei& H. Kleisli, Shape invariant functors: applications in module theory, Math. Zeitsch.164 (1978), 179- 183. Zbl0392.18010MR517153
  11. 11 A. Frei& H. Kleisli, A question in categorical shape theory: when is a shape invariant functor a Kan extension?Lecture Notes in Math. 719 (1979), 55-62. Zbl0412.18004MR544631
  12. 12 H. Kleisli, Coshape-invariant functors and Mackey's induced representation Theorem, Cahiers Top. et Géom. Diff. XXII-1 (1981), 105- 109. Zbl0453.18006MR609165
  13. 13 F.W. Lawvere, Metric spaces, generalized logic, and closed categories, Rend. Sem. Mat. e Fisico di MilanoXLIII (1973), 135-166. Zbl0335.18006MR352214
  14. 14 S. Mardeši & J. Segal, Shape theory. The inverse system approach, North Holland, 1982. Zbl0495.55001MR676973
  15. 15 R.H. Street, The formal theory of monads, J. Pure Ap. Alg.2 (1972), 149. Zbl0241.18003MR299653
  16. 16 R.H. Street, Cauchy characterization of enriched categories, Rend. Sem. Mat. e Fisico di MilanoLI (1981), 217-233. Zbl0538.18005MR708046
  17. 17 M. Thiebaud, Self-dual structure-semantics and algebraic categories, Dalhousie Univ., Halifax (1971). 
  18. 18 W. Tholen, Completions of categories and shape theory, Seminarbericbte 12 Fernuniversität Hagen (1982), 125 - 142. MR698464

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.