Čech methods and the adjoint functor theorem
Cahiers de Topologie et Géométrie Différentielle Catégoriques (1985)
- Volume: 26, Issue: 3, page 245-257
- ISSN: 1245-530X
Access Full Article
topHow to cite
topBetti, Renato. "Čech methods and the adjoint functor theorem." Cahiers de Topologie et Géométrie Différentielle Catégoriques 26.3 (1985): 245-257. <http://eudml.org/doc/91364>.
@article{Betti1985,
author = {Betti, Renato},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {Čech system; homotopy category of polyhedra; numerable coverings; nerve functor; shape theory; comma category; polyhedra under X; Čech extensions; categories enriched in a bicategory},
language = {eng},
number = {3},
pages = {245-257},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Čech methods and the adjoint functor theorem},
url = {http://eudml.org/doc/91364},
volume = {26},
year = {1985},
}
TY - JOUR
AU - Betti, Renato
TI - Čech methods and the adjoint functor theorem
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1985
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 26
IS - 3
SP - 245
EP - 257
LA - eng
KW - Čech system; homotopy category of polyhedra; numerable coverings; nerve functor; shape theory; comma category; polyhedra under X; Čech extensions; categories enriched in a bicategory
UR - http://eudml.org/doc/91364
ER -
References
top- 1 R. Betti, Bicategorie di base, Quad. 2/S, Ist. Mat. Univ. Milano, 1981.
- 2 R. Betti, Shape theory in a bicategory, Cahiers Top. et Géom. Diff.XXV-1 (1984), 41-49. Zbl0541.18005MR764970
- 3 R. Betti, Cocompleteness over coverings, J. Austral. Math. Soc. (to appear). Zbl0574.18005MR796029
- 4 R. Betti & R.F.C. Walters, Closed bicategories and variable category theory, Quad. 5/S, Ist. Mat. Univ. Milano, 1985.
- 5 R. Betti, A. Carboni, R.H. Street& R.F.C. Walters, Variation through enrichment, J. Pure Appl. Algebra29 (1983), 109-127. Zbl0571.18004MR707614
- 6 D. Bourn & J.-M. Cordier, Distributeurs et théorie de la forme, Cahiers Top. et Géom. Diff. XXI-2 (1980), 161-189. Zbl0439.55014MR574663
- 7 A. Calder & J. Siegel, Kan extensions of homotopy functors, J. Pure Appl. Algebra12 (1978), 253-269. Zbl0416.55004MR501952
- 8 A. Calder& J. Siegel, A note on Čech and Kan extensions of homotopy functors, J. Pure Appl. Algebra25 (1982), 249-250. Zbl0532.55016MR666019
- 9 A. Dold, Lectures on algebraic Topology, Springer, 1972. Zbl0872.55001MR415602
- 10 A. Frei, Kan extensions along full functors: Kan and Čech extensions of homotopy invariant functors, J. Pure Appl. Algebra17 (1980), 285-292. Zbl0477.18003MR579088
- 11 E. Giuli, Relations between reflective subcategories and shape theory, Glasnik Mat.16 (1981), 205-210. Zbl0486.18003MR653049
- 12 P. Johnstone& A. Joyal, Continuous categories and exponentiable toposes, J. Pure Appl. Algebra25 (1982), 255-292. Zbl0487.18003MR666021
- 13 G.M. Kelly, Basic concepts of enriched category theory, Cambridge Univ. Press, 1982. Zbl0478.18005MR651714
- 14 C.N. Lee& N. Raymond, Cech extensions of contravariant functors, Trans. AMS133 (1968), 415-434. Zbl0162.55001MR234450
- 15 S. Mardesić& J. Segal, Shape theory. The inverse system approach, North Holland, 1982. Zbl0495.55001MR676973
- 16 L. Stramaccia, Reflective subcategories and dense subcategories, Rend. Sem. Mat. Univ. Padova67 (1982), 191-198. Zbl0528.18002MR682712
- 17 R.H. Street, Enriched categories and cohomology, Quaest. Math.6 (1983), 265-283. Zbl0523.18007MR700252
- 18 R.H. Street, Absolute colimits in enriched categories, Cahiers TGDXXIV (1983). Zbl0532.18001
- 19 W. Tholen, Completions of categories and shape theory, Seminarberichte 12, Fernuniversität Hagen (1982), 125-142. MR698464
- 20 W. Tholen, Pro-categories and multiadjoint functors, Id.15 (1982), 133-148. Zbl0508.18001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.