Čech methods and the adjoint functor theorem

Renato Betti

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1985)

  • Volume: 26, Issue: 3, page 245-257
  • ISSN: 1245-530X

How to cite

top

Betti, Renato. "Čech methods and the adjoint functor theorem." Cahiers de Topologie et Géométrie Différentielle Catégoriques 26.3 (1985): 245-257. <http://eudml.org/doc/91364>.

@article{Betti1985,
author = {Betti, Renato},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {Čech system; homotopy category of polyhedra; numerable coverings; nerve functor; shape theory; comma category; polyhedra under X; Čech extensions; categories enriched in a bicategory},
language = {eng},
number = {3},
pages = {245-257},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Čech methods and the adjoint functor theorem},
url = {http://eudml.org/doc/91364},
volume = {26},
year = {1985},
}

TY - JOUR
AU - Betti, Renato
TI - Čech methods and the adjoint functor theorem
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1985
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 26
IS - 3
SP - 245
EP - 257
LA - eng
KW - Čech system; homotopy category of polyhedra; numerable coverings; nerve functor; shape theory; comma category; polyhedra under X; Čech extensions; categories enriched in a bicategory
UR - http://eudml.org/doc/91364
ER -

References

top
  1. 1 R. Betti, Bicategorie di base, Quad. 2/S, Ist. Mat. Univ. Milano, 1981. 
  2. 2 R. Betti, Shape theory in a bicategory, Cahiers Top. et Géom. Diff.XXV-1 (1984), 41-49. Zbl0541.18005MR764970
  3. 3 R. Betti, Cocompleteness over coverings, J. Austral. Math. Soc. (to appear). Zbl0574.18005MR796029
  4. 4 R. Betti & R.F.C. Walters, Closed bicategories and variable category theory, Quad. 5/S, Ist. Mat. Univ. Milano, 1985. 
  5. 5 R. Betti, A. Carboni, R.H. Street& R.F.C. Walters, Variation through enrichment, J. Pure Appl. Algebra29 (1983), 109-127. Zbl0571.18004MR707614
  6. 6 D. Bourn & J.-M. Cordier, Distributeurs et théorie de la forme, Cahiers Top. et Géom. Diff. XXI-2 (1980), 161-189. Zbl0439.55014MR574663
  7. 7 A. Calder & J. Siegel, Kan extensions of homotopy functors, J. Pure Appl. Algebra12 (1978), 253-269. Zbl0416.55004MR501952
  8. 8 A. Calder& J. Siegel, A note on Čech and Kan extensions of homotopy functors, J. Pure Appl. Algebra25 (1982), 249-250. Zbl0532.55016MR666019
  9. 9 A. Dold, Lectures on algebraic Topology, Springer, 1972. Zbl0872.55001MR415602
  10. 10 A. Frei, Kan extensions along full functors: Kan and Čech extensions of homotopy invariant functors, J. Pure Appl. Algebra17 (1980), 285-292. Zbl0477.18003MR579088
  11. 11 E. Giuli, Relations between reflective subcategories and shape theory, Glasnik Mat.16 (1981), 205-210. Zbl0486.18003MR653049
  12. 12 P. Johnstone& A. Joyal, Continuous categories and exponentiable toposes, J. Pure Appl. Algebra25 (1982), 255-292. Zbl0487.18003MR666021
  13. 13 G.M. Kelly, Basic concepts of enriched category theory, Cambridge Univ. Press, 1982. Zbl0478.18005MR651714
  14. 14 C.N. Lee& N. Raymond, Cech extensions of contravariant functors, Trans. AMS133 (1968), 415-434. Zbl0162.55001MR234450
  15. 15 S. Mardesić& J. Segal, Shape theory. The inverse system approach, North Holland, 1982. Zbl0495.55001MR676973
  16. 16 L. Stramaccia, Reflective subcategories and dense subcategories, Rend. Sem. Mat. Univ. Padova67 (1982), 191-198. Zbl0528.18002MR682712
  17. 17 R.H. Street, Enriched categories and cohomology, Quaest. Math.6 (1983), 265-283. Zbl0523.18007MR700252
  18. 18 R.H. Street, Absolute colimits in enriched categories, Cahiers TGDXXIV (1983). Zbl0532.18001
  19. 19 W. Tholen, Completions of categories and shape theory, Seminarberichte 12, Fernuniversität Hagen (1982), 125-142. MR698464
  20. 20 W. Tholen, Pro-categories and multiadjoint functors, Id.15 (1982), 133-148. Zbl0508.18001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.