Exact sequence interlocking and free homotopy theory
Cahiers de Topologie et Géométrie Différentielle Catégoriques (1985)
- Volume: 26, Issue: 1, page 3-31
- ISSN: 1245-530X
Access Full Article
topHow to cite
topHardie, K. A., and Kamps, K. H.. "Exact sequence interlocking and free homotopy theory." Cahiers de Topologie et Géométrie Différentielle Catégoriques 26.1 (1985): 3-31. <http://eudml.org/doc/91355>.
@article{Hardie1985,
author = {Hardie, K. A., Kamps, K. H.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {exactness in categories of pointed sets; Kervaire diagram; interlocking sequences; nonabelian Mayer-Victoris sequences; free homotopy sets},
language = {eng},
number = {1},
pages = {3-31},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Exact sequence interlocking and free homotopy theory},
url = {http://eudml.org/doc/91355},
volume = {26},
year = {1985},
}
TY - JOUR
AU - Hardie, K. A.
AU - Kamps, K. H.
TI - Exact sequence interlocking and free homotopy theory
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1985
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 26
IS - 1
SP - 3
EP - 31
LA - eng
KW - exactness in categories of pointed sets; Kervaire diagram; interlocking sequences; nonabelian Mayer-Victoris sequences; free homotopy sets
UR - http://eudml.org/doc/91355
ER -
References
top- 1 R. Brown, On a method of P. Olum, J. London Math. Soc.40 (1965), 303-304. Zbl0145.43401MR175132
- 2 R. Brown, Fibrations of groupoids, J. Algebra15 (1970), 103-132. Zbl0194.02202MR271194
- 3 R. Brown, P.R. Heath & K.H. Kamps, Groupoids and the Mayer-Vietoris sequence, J. Pure Appl. Algebra30 (1983), 109-129. Zbl0522.18010MR722367
- 4 R. Brown, P.R. Heath & K.H. Kamps, Coverings of groupoids and Mayer-Vietoris type sequences, Proc. Toledo, Sigma Ser. in Pure Math. 5, Heldermann (1984), 147. Zbl0553.18005MR785015
- 5 T. tom Dieck, K.H. Kamps & D. Puppe, Homotopietheorie, Lecture Notes in Math.157, Springer (1970). Zbl0203.25401MR407833
- 6 E. Dyer & J. Roitberg, Note on sequences of Mayer-Vietoris type, Proc. A.M.S.80 (1980), 660-662. Zbl0455.55012MR587950
- 7 P. Gabriel& M. Zisman, Calculus of fractions and homotopy theory, Springer, 1966. Zbl0186.56802MR210125
- 8 K.A. Hardie & A.V. Jansen, Toda brackets and the category of homotopy pairs, Quaestiones Math.6 (1983), 107-128. Zbl0522.55011MR700243
- 9 P.R. Heath& K.H. Kamps, On exact orbit sequences, Ill. J. Math.26 (1982), 149-154. Zbl0467.20043MR638559
- 10 K.H. Kamps, Zur Homotopietheorie von Gruppoiden, Arch. Math.23 (1972), 610-618. Zbl0251.20059MR315022
- 11 L. Kaup& H.G. Weidner, Mayer-Vietoris Sequenzen und Lefschetzsätze fGr mehrfache Hyperflächenschnitte in der Homotopie, Math. Z.142 (1975), 243-269. Zbl0295.14010MR377124
- 12 Y. Nomura, On mapping sequences, Nagoya Math. J.17 (1960), 111-145. Zbl0125.11403MR132545
- 13 Y. Nomura, An application of the path-space technique to the theory of triads, Nagoya Math. J.22 (1963), 169-188. Zbl0123.39702MR155327
- 14 P. Olum, Non-abelian cohomology and van Kampen's Theorem, Ann. Math.68 (1958), 658-667. Zbl0088.15202MR96218
- 15 D. Puppe, Homotopiemengen und ihre induzierten Abbildungen I, Math. Z.69 (1958), 299-344. Zbl0092.39803MR100265
- 16 J.W. Rutter, A homotopy classification of mape into an induced fibre space, Topology6 (1967), 379-403. Zbl0152.21804MR214070
- 17 R.J. Steiner, Exact sequences of conjugacy classes and rationalization. Math. Proc. Cambridge Phil. Soc.82 (1977), 249-253. Zbl0365.20037MR447406
- 18 R.M. Switzer, Algebraic Topology -Homotopy and Homology, Springer, 1975. Zbl0305.55001MR385836
- 19 H. Toda, Composition Methods in Homotopy Croups of Spheres, Ann. of Math. Studies49, Princeton Univ. Press, 1962. Zbl0101.40703MR143217
- 20 C.T.C. Wall, On the exactness of interlocking sequences, l'Enseignement Math.12 (1966), 95-100. Zbl0151.31205MR206943
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.