On product and change of base for toposes

Andrews Pitts

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1985)

  • Volume: 26, Issue: 1, page 43-61
  • ISSN: 1245-530X

How to cite

top

Pitts, Andrews. "On product and change of base for toposes." Cahiers de Topologie et Géométrie Différentielle Catégoriques 26.1 (1985): 43-61. <http://eudml.org/doc/91356>.

@article{Pitts1985,
author = {Pitts, Andrews},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {S-indexed functor; coend; essential geometric morphism; sup-lattices; locales; topos; cocomplete categories; Product of Grothendieck toposes; tensor product},
language = {eng},
number = {1},
pages = {43-61},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {On product and change of base for toposes},
url = {http://eudml.org/doc/91356},
volume = {26},
year = {1985},
}

TY - JOUR
AU - Pitts, Andrews
TI - On product and change of base for toposes
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1985
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 26
IS - 1
SP - 43
EP - 61
LA - eng
KW - S-indexed functor; coend; essential geometric morphism; sup-lattices; locales; topos; cocomplete categories; Product of Grothendieck toposes; tensor product
UR - http://eudml.org/doc/91356
ER -

References

top
  1. 1 M. Artin, A. Grothendieck & J.L. Verdier, Théorie des Topos et cohomologie étale des schémas (SGA 4, Vol. 1), Lecture Notes in Math.269, Springer (1972). Zbl0234.00007MR354653
  2. 2 M. Barr & R. Pare, Molecular toposes, J. Pure & Appl. Algebra17 (1980), 127-152. Zbl0436.18002MR567064
  3. 3 J. Benabou, Les distributeurs, Inst. Math. Pure et Appl., Rapport 33, Univ. Cath. Louvain-la-Neuve (1973). 
  4. 4 J. Benabou, Fibrations petitesetlocalement petites, C.R.A.S.Paris281 (1975), 897-900. Zbl0349.18006MR393181
  5. 5 J. Benabou, Fibred categories and the foundations of naive category theory, J. Symbolic Logic50 (1985), 1-37. Zbl0564.18001MR780520
  6. 6 J. Celeyrette, Fibrations et extensions de Kan, Thesis Univ. Paris-Nord, 1975. 
  7. 7 P.T. Johnstone, Topos Theory, L.M.S. Math. Mongraphs10, Academic Press, London, 1977. Zbl0368.18001MR470019
  8. 8 A. Joyal& M. Tierney, An extension of the Galois theory of Grothendieck, Mem. AMS51 (1984), N° 309. Zbl0541.18002MR756176
  9. 9 G.M. Kelly, Basic concepts of enriched category theory, L.M.S. Lecture Note Series64, Cambridge Univ. Press, Cambridge, 1982. Zbl0478.18005MR651714
  10. 10 S. Maclane, Categories for the working mathematician, Springer, 1978. Zbl0705.18001MR1712872
  11. 11 S. Maclane & R. Pare, Coherence for bicategories and indexed categories, Preprint 1984. Zbl0567.18003MR794793
  12. 12 R. Pare, Indexed categories and generated topologies, J. Pure & Appl. Algebra19 (1980), 385-400. Zbl0444.18003MR593260
  13. 13 R. Pare & D. Schumacher, Abstract families and the adjoint functor theorems, Lecture Notes in Math.661, Springer (1978). Zbl0389.18002MR514193
  14. 14 R. Street, Fibrations in bicategories, Cahiers Top. et Géom. Diff.XXI-2 (1980), 111-160. Zbl0436.18005MR574662

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.