Crossed modules in C a t and a Brown-Spencer theorem for 2 -categories

Timothy Porter

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1985)

  • Volume: 26, Issue: 4, page 381-388
  • ISSN: 1245-530X

How to cite

top

Porter, Timothy. "Crossed modules in $Cat$ and a Brown-Spencer theorem for $2$-categories." Cahiers de Topologie et Géométrie Différentielle Catégoriques 26.4 (1985): 381-388. <http://eudml.org/doc/91370>.

@article{Porter1985,
author = {Porter, Timothy},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {2-categories; extensions of categories; crossed modules; C-structures; internal categories; Brown-Spencer theorems},
language = {eng},
number = {4},
pages = {381-388},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Crossed modules in $Cat$ and a Brown-Spencer theorem for $2$-categories},
url = {http://eudml.org/doc/91370},
volume = {26},
year = {1985},
}

TY - JOUR
AU - Porter, Timothy
TI - Crossed modules in $Cat$ and a Brown-Spencer theorem for $2$-categories
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1985
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 26
IS - 4
SP - 381
EP - 388
LA - eng
KW - 2-categories; extensions of categories; crossed modules; C-structures; internal categories; Brown-Spencer theorems
UR - http://eudml.org/doc/91370
ER -

References

top
  1. 1 R. Brown, Higher dimensional group theory, London Math. Soc. Lecture Notes48, 1982, Cambridge Univ. Press. Zbl0484.55007MR662433
  2. 2 R. Brown& P.J. Higgins, On the connection between the second relative homotopy groups of some related spaces, Proc. London Math. Soc. (3) 36 (1978), 193-212. Zbl0405.55015MR478150
  3. 3 R. Brown & J. Huebschmann, Identities among the relations, London Math. Soc. Lecture Notes48, 1982, Cambridge Univ. Press. Zbl0485.57001MR662431
  4. 4 R. Brown & C.B. Spencer, G-groupoids, crossed modules and the fundamental groupoid of a topological group, Proc. Kon. Ned. Akad. v. Wet.79 (1976), 296-302. Zbl0333.55011MR419643
  5. 5 R. Brown & C.B. Spencer, Double groupoids and crossed modules, Cahiers Top. et Géom. Diff. XVII-4 (1976), 343-362. Zbl0344.18004MR440553
  6. 6 C. Ehresmann, Oeuvres complètes et commentées, Part III-2, Amiens1980. (Papers /70/, p. 439; /73/, p. 447; /74/, p. 451; /84/, p. 463; /91/, p. 531; and Comments p. 780 and 845.) Zbl0452.01017
  7. 7 M. Gerstenhaber, A uniform cohomology theory for algebras, Proc. Nat. Acad. Sci.51 (1964), 627-629. Zbl0166.04205MR160807
  8. 8 G. Hoff, On the cohomology of categories, Rend. Mate. (2) 7 (1974), 169-192. Zbl0361.18012MR409609
  9. 9 D. Holt, An interpretation of the cohomology groups Hn(G, M), J. Alg.60 (1979), 307-320. Zbl0699.20040MR549932
  10. 11 J. Huebschmann, Group extensions, crossed pairs and an eight term exact sequence, J. Reine angew. Math.321 (1981), 150-172. Zbl0441.20033MR597986
  11. 12 C.U. Jensen, Les foncteurs dérivés de lim et leurs applications en théorie des modules, Lecture Notes in Math.254, Springer (1972). Zbl0238.18007MR407091
  12. 13 R. Lavendhomme& J.R. Roisin, Cohomologie non-abélienne de structures algébriques, J. Alg.67 (1980), 385-414. Zbl0503.18013MR602071
  13. 14 W.R. Nico, Categorical extension theory of monoids, PreprintTulane Univ.1978. Zbl0445.20048
  14. 15 C.B. Spencer, An abstract setting for homotopy pushouts and pullbacks, Cahiers Top. et Géom. Diff. XVIII-4 (1977) 409-429. Zbl0378.18008MR486054
  15. 16 C. Wells, Extension theories for categories, (preliminary Report)Case Western Reserve University, June 1979. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.