Complete theories in 2 -categories

Renato Betti; Marco Grandis

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1988)

  • Volume: 29, Issue: 1, page 9-57
  • ISSN: 1245-530X

How to cite

top

Betti, Renato, and Grandis, Marco. "Complete theories in $2$-categories." Cahiers de Topologie et Géométrie Différentielle Catégoriques 29.1 (1988): 9-57. <http://eudml.org/doc/91414>.

@article{Betti1988,
author = {Betti, Renato, Grandis, Marco},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {bicategories; universal models; biuniversal problems; 2-categories; 2- functor; birepresentations; bicompleteness; bicontinuity; biinitial object; theories; biuniversal model; classifying object; sketch; substitute for Taylor's integral remainder; Minkowski functional},
language = {eng},
number = {1},
pages = {9-57},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Complete theories in $2$-categories},
url = {http://eudml.org/doc/91414},
volume = {29},
year = {1988},
}

TY - JOUR
AU - Betti, Renato
AU - Grandis, Marco
TI - Complete theories in $2$-categories
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1988
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 29
IS - 1
SP - 9
EP - 57
LA - eng
KW - bicategories; universal models; biuniversal problems; 2-categories; 2- functor; birepresentations; bicompleteness; bicontinuity; biinitial object; theories; biuniversal model; classifying object; sketch; substitute for Taylor's integral remainder; Minkowski functional
UR - http://eudml.org/doc/91414
ER -

References

top
  1. BE A. (BASTIANI-) Ehresmann & C. Ehresmann, Categories of sketched structures, Cahiers Top. et Géom. Diff.XIII (1972), 105-214; reprinted in; Charles Ehresmann; Œuvres complètes et commentées, Part IV-2, Amiens, 1983, Zbl0263.18009
  2. Bu A. Burroni, Algèbres graphiques, Cahiers Top. et Géom. Diff.XXII-3 (1981), 249-265, Zbl0497.18004
  3. G1 M. Grandis, On distributive homological algebra, I. RE-categories, Cahiers Top. et Géom. Diff.XXV-3 (1984), 259-301, Zbl0564.18005MR786552
  4. G2 M. Grandis, On distributive homological algebra, II, Theories and models, Id, XXV-4, 353-379, Zbl0564.18006MR789134
  5. G3, M. Grandis, On distributive homological algebra, III, Homological theories, Id, XXVI-2 (1985), 169-213, Zbl0577.18003MR794753
  6. Gr, P.A. Grillet, Regular categories, Lecture Notes in Math, 236, Springer (1971), 121-222, Zbl0251.18001MR289599
  7. Je, T. Jech, Set Theory, Academic Press, 1978, Zbl0419.03028MR506523
  8. K1, G.M. Kelly, Basic concepts of enriched category theory, Cambridge Univ. Press, 1982. Zbl0478.18005MR651714
  9. K2, G.M. Kelly, On the essentially-algebraic theory generated by a sketch, Bull. Austral. Math. Soc, 26 (1982), 44-56, Zbl0488.18001MR679920
  10. KS, G.M. Kelly & R. Street, Review of the elements of 2-categories, Lecture Notes in Math, 611, Springer (1977), MR357542
  11. KR, A. Kock & G.E. Reyes, Doctrines in categorical logic, in; Handbook of mathematical logic, North Holland1977, 283-313, MR491125
  12. La, F.W. Lawvere, Functorial semantics of algebraic theories, Proc. Nat. Acad. Sci. U.S.A., 50 (1963), 869-872, Zbl0119.25901MR158921
  13. Ma, S., Mac Lane, Categories for the working mathematician, Springer1971, Zbl0906.18001MR354798
  14. Mi, B. Mitchell, Theory of categories, Academic Press, 1965, Zbl0136.00604MR202787
  15. MS, J. MacDonald & A. Stone, Topoi over graphs, Cahiers Top. et Géom. Diff.XXV-1 (1984), 51-63, Zbl0546.18004MR764971
  16. Pu, D. Puppe, Korrrespondenzen in abelschen Kategorien, Math. Annalen148 (1962), 1-30, Zbl0109.25201MR141698
  17. S1, R. Street, Limits indexed by category valued 2-functors, J. Pure Appl. Alg.8 (1976), 149-181, Zbl0335.18005MR401868
  18. S2, R. Street, Fibrations in bicategories, Cahiers Top. et Géom. Diff.XXI-2 (1980), 111-160, Zbl0436.18005MR574662

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.