On distributive homological algebra. III. Homological theories

Marco Grandis

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1985)

  • Volume: 26, Issue: 2, page 169-213
  • ISSN: 1245-530X

How to cite

top

Grandis, Marco. "On distributive homological algebra. III. Homological theories." Cahiers de Topologie et Géométrie Différentielle Catégoriques 26.2 (1985): 169-213. <http://eudml.org/doc/91362>.

@article{Grandis1985,
author = {Grandis, Marco},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {RE-categories; ordered involutive categories; exact category; 2-category; spectral sequence; canonical model; Zeeman diagrams; filtered complexes},
language = {eng},
number = {2},
pages = {169-213},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {On distributive homological algebra. III. Homological theories},
url = {http://eudml.org/doc/91362},
volume = {26},
year = {1985},
}

TY - JOUR
AU - Grandis, Marco
TI - On distributive homological algebra. III. Homological theories
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1985
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 26
IS - 2
SP - 169
EP - 213
LA - eng
KW - RE-categories; ordered involutive categories; exact category; 2-category; spectral sequence; canonical model; Zeeman diagrams; filtered complexes
UR - http://eudml.org/doc/91362
ER -

References

top
  1. 1 G. Birkhoff, Lattice Theory, Coll.Publ. A.M.S., New York1973. JFM66.0100.04
  2. 2 H. Cartan & S. Eilenberg, Homological Algebra, Princeton Univ. Press, 1956. Zbl0075.24305MR77480
  3. 3 R. Deheuvels, Topologie d'une fonctionnelle, Ann. Math.61 (1955), 13-72. Zbl0067.33303MR69488
  4. 4 M. Grandis, Spazi con operatori e applicazioni al problema di Knaster, Rend. Sem. Mat. Univ. Padova38 (1967), 258-286. Zbl0212.56103MR221502
  5. 5 M. Grandis, Il sistema spettrale di un complesso multiplo, Rend. Sem. Mat. Univ. Padova40 (1968), 252-298. Zbl0192.34203MR242159
  6. 6 M. Grandis, Induction in orthodox involution categories (Orthodox Categories 3), Ann. mat. Pura Appl.116 (1978), 87-99. Zbl0393.18006MR506975
  7. 7 M. Grandis, Quaternary categories having orthodox symmetrizations (Orthodox Symmetrizations 1), Boll. Un. Mat. Ital.14-B (1977), 605-629. Zbl0445.18003MR486062
  8. 8 M. Grandis, Distributive unions in semilatticesand in inverse symmetrizations, Riv. Mat. Univ. Parma6 (1980), 363-378. Zbl0464.06003MR621810
  9. 9 M. Grandis, Zeeman diagrams for homological systems, Rapporti Scient. Ist. Mat. Univ.Genova102 (1981). 
  10. 10 M. Grandis, Concrete representations for inverse and distributive exact categories, Rend. Accad. Naz. Sci. XL Mem. Mat.8 (1984), 99-120. Zbl0556.18004MR774916
  11. 11 M. Grandis, The running knot Theorem for idempotent categories, Boll. UMI 4 Zbl0569.18007MR799782
  12. 12 M. Grandis, On distributive homological algebra, I. RE-categories, Cahiers Top. et Géom. Diff.XXV-3 (1984), 259-302. Zbl0564.18005MR786552
  13. 13 M. Grandis, Id, II. Theories and models, IdXXV-4 (1984), 353-380. Zbl0564.18006MR789134
  14. 14 P.J. Hilton & S. Wylie, Homology Theory, Cambridge Univ. Press, 1962. Zbl0091.36306
  15. 15 S. Mac Lane, Homology, Springer, 1963. Zbl0818.18001MR1344215
  16. 16 S. Mac Lane, Categories for the working mathematician, Springer, 1971. Zbl0906.18001MR1712872
  17. 17 B. Mitchell, Theory of categories, Academic Press, 1965. Zbl0136.00604MR202787
  18. 18 D. Puppe, Korrespondenzen in abelschen Kategorien, Math. Ann.148 (1962), 1-30. Zbl0109.25201MR141698
  19. 19 E.H. Spanier, Algebraic topology, Mc Graw-Hill, New York1966. Zbl0145.43303MR210112
  20. 20 E.C. Zeeman, On the filtered differential group, Ann. Math.66 (1957), 557-585. Zbl0097.38703MR96209

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.