Finitary fibrations

Grzegorz Jarzembski

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1989)

  • Volume: 30, Issue: 2, page 111-126
  • ISSN: 1245-530X

How to cite

top

Jarzembski, Grzegorz. "Finitary fibrations." Cahiers de Topologie et Géométrie Différentielle Catégoriques 30.2 (1989): 111-126. <http://eudml.org/doc/91434>.

@article{Jarzembski1989,
author = {Jarzembski, Grzegorz},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {category of models of a first-order theory; categories of models of universal theories of relational languages; without equality; Priestley spaces; categories of models of universal theories of relational languages without equality},
language = {eng},
number = {2},
pages = {111-126},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Finitary fibrations},
url = {http://eudml.org/doc/91434},
volume = {30},
year = {1989},
}

TY - JOUR
AU - Jarzembski, Grzegorz
TI - Finitary fibrations
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1989
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 30
IS - 2
SP - 111
EP - 126
LA - eng
KW - category of models of a first-order theory; categories of models of universal theories of relational languages; without equality; Priestley spaces; categories of models of universal theories of relational languages without equality
UR - http://eudml.org/doc/91434
ER -

References

top
  1. 1 Grätzer G., Universal Algebra, 2nd ed., Springer1979. MR538623
  2. 2 Gray J.W., Fibred and cofibred categories, Proc. Conf. Cat. Algebra La Jolla 1965, Springer (1966), 21-83. Zbl0192.10701MR213413
  3. 3 Herrlich H. & Strecker G.E., Category Theory, Allyn and Bacon, Boston1973. Zbl0265.18001MR349791
  4. 4 Keisler H.J., Fundamentals of Model Theory, Handbook of Mathematical Logic (Ed. J. Bairwise), North Holland (1977), 47-105. MR491125
  5. 5 Mac Lane S., Categories for the Working Mathematician, Springer1971. Zbl0906.18001MR354798
  6. 6 Menu J. & Pultr A., On categories detemined by Posetand Set-valued functors, Comm. Math. Univ. Carolinæ15 (1974), 665-678. Zbl0331.18008MR371989
  7. 7 Priestley H.A., Ordered sets and duality for distributive lattices, Proc. Conf. on Ordered Sets and their applications, Lyon, 1982. Zbl0557.06007
  8. 8 Rosický J., Concrete categories and infinitary languages, J. Pure Appl. Algebra22 (1981), 309-339. Zbl0475.18001MR629337
  9. 9 Rosický J., Elementary categories, Preprint. Zbl0665.18004MR989884
  10. 10 Wyler O., Top - categories and categorical topology, Gen. Top. & Appl.1 (1971), 17-28. Zbl0215.51502MR282324

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.