Non-abelian cohomology of associative algebras. The 9 -term exact sequence

Antonio M. Cegarra; Antonio R. Garzon

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1989)

  • Volume: 30, Issue: 4, page 295-338
  • ISSN: 1245-530X

How to cite

top

Cegarra, Antonio M., and Garzon, Antonio R.. "Non-abelian cohomology of associative algebras. The $9$-term exact sequence." Cahiers de Topologie et Géométrie Différentielle Catégoriques 30.4 (1989): 295-338. <http://eudml.org/doc/91445>.

@article{Cegarra1989,
author = {Cegarra, Antonio M., Garzon, Antonio R.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {crossed modules; non-abelian 2-cohomology; exact sequence of algebras; monadic non-abelian cohomology},
language = {eng},
number = {4},
pages = {295-338},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Non-abelian cohomology of associative algebras. The $9$-term exact sequence},
url = {http://eudml.org/doc/91445},
volume = {30},
year = {1989},
}

TY - JOUR
AU - Cegarra, Antonio M.
AU - Garzon, Antonio R.
TI - Non-abelian cohomology of associative algebras. The $9$-term exact sequence
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1989
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 30
IS - 4
SP - 295
EP - 338
LA - eng
KW - crossed modules; non-abelian 2-cohomology; exact sequence of algebras; monadic non-abelian cohomology
UR - http://eudml.org/doc/91445
ER -

References

top
  1. 1 Andre M., Homologie des algèbres commutatives, Springer1974. Zbl0222.13017MR352220
  2. 2 Aznar E.R., Cohomologia no abeliana en categorias de interes, Alxebra33 (1983). Zbl0486.18017MR650975
  3. 3 Barr M., Skula cohomology and triples, J. of Algebra5 (1967), 222-231. Zbl0164.01502
  4. 4 Barr M. & Beck J., Homology and standard construction, Lecture Notes in Math.80, Springer (1969), 357-375. Zbl0172.02201MR258917
  5. 5 Bullejos M., Cohomologia no abeliano, la sucesion exacta larga, Tesis, Univ. Granada, 1985. 
  6. 6 Brown R., Some non-abelian methods in homotopy theory and homological theory, Univ. C.N. W.1984. Zbl0558.55001
  7. 7 Cegarra A.M. & Aznar E.R., An exact sequence in the first variable for the torsor cohomology. The 2-dimensional theory of obstructions, J. Pure & Appl. Algebra39 (1988), 197-250. Zbl0587.18007MR821890
  8. 8 Cegarra A.M. & Bullejos M., n-cocycles non-abéliens, C. R. A. S.Paris298 I, n° 17 (1984), 401-404. Zbl0573.55006MR765260
  9. 9 Cegarra A.M., Bullejos M. & Garzon A., Higher dimensional obstruction theory in algebraic categories, J. Pure & Appl. Algebra49 (1987), 43-102. Zbl0634.18004MR920515
  10. 10 Cegarra A.M., & Garzon A., La principalité dans la théorie de l'obstruction de dimension 3. Un allongement de la suite de cohomologie non-abélienne des groupes, C. R. A. S. Paris302, I, n° 15 (1986), 523-526. Zbl0599.18008MR845639
  11. 11 Dedecker P., Sur la n-cohomologie non-abélienne, C. R. A. S. Paris260, 1 (1965), 4137-4139. Zbl0135.02402MR179224
  12. 12 Dedecker P., Cohomologie non-abélienne, Fac. Sc. Lille1965. 
  13. 13 Dedecker P., Three dimensional non-abelian cohomology for groups. Lecture Notes in Math.92, Springer (1969), 32-64. Zbl0249.18027MR263894
  14. 14 Dedecker P., Les foncteurs Ext, H2 et H2 non-abéliens, C. R. A. S. Paris258 (1964), 1117-1120. Zbl0124.01401MR168613
  15. 15 Dedecker P., Sur la cohomologie non-abélienne I and II, Canad. J. of Math. (1960, 1963) . MR111021
  16. 16 Dedecker P. & Lue A.S.T.A non-abelian 2-dimensional cohomology for associative algebras, Bull. A.M.S.72 (1966), 1044-1050. Zbl0156.25903MR210754
  17. 17 Duskin J., Simplicial methods and the interpretation of triple cohomology, MemoirA.M.S.3, 2 (1975), 163. Zbl0376.18011MR393196
  18. 18 Duskin J., Non-abelian monadic cohomology and low dimensional obstruction theory, Math. Forschung Ins. Oberwolfach Tagungsbericht33 (1976). 
  19. 19 Duskin J., An outline of non-abelian cohomology in a topos I. Cahiers Top. et Géom. Diff.XXIII (1982), 165-191. Zbl0496.18009MR667397
  20. 20 Ehresmann C., Cohomologie non-abélienne, C.B.R.M.1964; reprinted in Charles Ehresmann: Œuvres completes et commentées III-2, Amiens1981. 
  21. 21 Frenkel J., Cohomologie non-abélienne, Bull. Soc. Math. France85 (1957), 135-238. Zbl0082.37702MR98200
  22. 22 Gerstenhaber M., On the deformation of rings and algebras II. Ann. of Math.84 (1966). Zbl0147.28903MR207793
  23. 23 Glenn P., Realization of cohomology classes in arbitrary exact categories, J. Pure & Appl. Algebra25, 1 (1982), 33-107. Zbl0487.18015MR660389
  24. 24 Grothendieck A., Catégories fibrées et descente, S.G.A.. ExposéVI (1960-61), 50 pp. 
  25. 25 Higgins P.J.Notes on categories and groupoids, Van Nostrand1972. Zbl0226.20054MR327946
  26. 26 Lavendhomme R. & Roisin J.R., Cohomologie non-abélienne de structures algébriques, J. of Algebra67 (1980), 385- 414. Zbl0503.18013MR602071
  27. 27 Lue A.S.T., Non-abelian cohomology of associative algebras, J. Math. Oxford (2) 19 (1968), 159-180. Zbl0185.09304MR248199
  28. 28 Mac Lane S., Extensions and obstructions for rings, Illinois J. of Math.2 (1958), 316-345. Zbl0081.03303MR98773
  29. 29 May J.P., Simplicial objects in algebraic Topology, Van Nostrand1976. Zbl0165.26004MR222892
  30. 30 Shukla u., Cohomologie des algèbres associatives, Ann. Sci. Ecole Norm. Sup78 (1961), 163-209. Zbl0228.18005MR132769

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.