Homology groups H n q ( - ) and eight-term exact sequences

J. Barja; C. Rodriguez

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1990)

  • Volume: 31, Issue: 2, page 91-120
  • ISSN: 1245-530X

How to cite

top

Barja, J., and Rodriguez, C.. "Homology groups $H^q_n(-)$ and eight-term exact sequences." Cahiers de Topologie et Géométrie Différentielle Catégoriques 31.2 (1990): 91-120. <http://eudml.org/doc/91457>.

@article{Barja1990,
author = {Barja, J., Rodriguez, C.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {long exact sequence of homology with coefficients in ; normal subgroups of a group; variety of abelian groups of exponent q; verbal subgroup; m-fold derived functor},
language = {eng},
number = {2},
pages = {91-120},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Homology groups $H^q_n(-)$ and eight-term exact sequences},
url = {http://eudml.org/doc/91457},
volume = {31},
year = {1990},
}

TY - JOUR
AU - Barja, J.
AU - Rodriguez, C.
TI - Homology groups $H^q_n(-)$ and eight-term exact sequences
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1990
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 31
IS - 2
SP - 91
EP - 120
LA - eng
KW - long exact sequence of homology with coefficients in ; normal subgroups of a group; variety of abelian groups of exponent q; verbal subgroup; m-fold derived functor
UR - http://eudml.org/doc/91457
ER -

References

top
  1. 1 M. Andre.Méthode simpliciale en Algèbre Homologique et Algèbre Commutative. Lecture Notes in Math.32. Springer (1967). Zbl0154.01402MR214644
  2. 2 R. Brown, Coproducts of crossed P-modules: Applications to second homotopy groups and to the homology of groups. Topology23 (3) (1984). 337-345. Zbl0519.55009MR770569
  3. 3 R. Brown & G.J. Ellis.Hopf formulae for the higher homology of a group. U.C.N.N. Pure Math. Preprint87. 6. Bangor1987. MR924238
  4. 4 R. Brown, D.L. Johnson & E.F. Robertson.Some computations of Non-Abelian tensor products of groups. J. of Algebra111 (1987). 177-202. Zbl0626.20038MR913203
  5. 5 R. Brown& J. Loday.Excision homotopique en basse dimension. C.R.A.S.Paris298 (1984), 353-356. Zbl0573.55011MR745014
  6. 6 R. Brown & J. Loday.Van Kampen Theorems for diagrams of spaces. Topology26 (3) (1987). 311-335. Zbl0622.55009MR899052
  7. 7 B. Eckmann& P. Hilton.On central group extensions and homology. Comment. Math. Helv.46 (1971). 345-355. Zbl0232.18011MR294505
  8. 8 B. Eckmann. P. Hilton & U. Stammbach.On the homology theory of central group extensions. I. Comment. Math. Helv.47 (1972). 102-122. Zbl0236.20038MR311795
  9. 9 B. Eckmann. P. Hilton & U. Stammbach.On the homology theory of central group extensions. II. Comment. Math. Helv.47 (1972). 171-178. Zbl0246.20041MR320159
  10. 10 G.J. Ellis.Crossed modules and their higher dimensional analogues, Ph.D. Thesis, University of Wales. 1984. 
  11. 11 G.J. Ellis.Non-Abelian exterior products of groups and exact sequences in the homology of groups. Glasgow Math. J.29 (1987). 13-19. Zbl0631.20040MR876146
  12. 12 G.J. Ellis.Non-Abelian exterior products of Lie algebras and exact sequences in the homology of Lie algebras. J. Pure & Appl. Algebra46 (1987). 111-115. Zbl0617.17005MR897010
  13. 13 A. Frohlich.Baer-invariants of algebras. Trans. A.M.S.109 (1963). 221-244. Zbl0122.25702MR158920
  14. 14 A. Gut.A ten-term exact sequence in the homology of a group extension. J. Pure & Appl. Algebra8 (1976). 243-260. Zbl0361.20057MR414741
  15. 15 A. Gut& U. Stammbach.On exact sequence in homology associated with a group extension. J. Pure & Appl. Algebra7 (1976). 15-34. Zbl0328.20041MR387381
  16. 16 K. Gruenberg.Cohomological topics in group theory. Lecture Notes in Math.143. Springer (1970). Zbl0205.32701MR279200
  17. 17 K Gruenberg.A permutation theoretic description of group cohomology (unpublished). 
  18. 18 F. Keune.Homotopical algebra and algebraic K-theory. Ph. D. Thesis, University of Amsterdam. 1972. 
  19. 19 W. Magnus. A. Karrass & D. Solitar.Combinatorial group theory, Interscience1966. Zbl0138.25604
  20. 20 J. May, Simplicial objects in Algebraic Topology, Van Nostrand1967. Zbl0165.26004MR222892
  21. 21 K. Modi, Simplicial methods and the homology of groups. Ph. D. Thesis, University of London, 1976. 
  22. 22 C. Rinehart, Satellites and cohomology. J. of Algebra12 (1969). 295-329. Zbl0181.03101MR245647
  23. 23 C. Rodriguez, Invariantes de Baer y cohomologia en variedades de Ω-grupos. Alxebra28, Santiago (1980). Zbl0455.18003
  24. 24 C. Rodriguez. L. Franco & J. Barja.An exact sequence in the homology of groups. Comm. in Algebra15 (4) (1987), 827-844. Zbl0626.20040MR877199
  25. 25 U. Stammbach.Homology in group theory. Lecture Notes in Math.359. Springer (1973). Zbl0272.20049MR382477

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.